Mudlet Lua Function API Reference

Contents
Alphabetical FUNCION INAEX......uuuviiiiiiiiiiiiiiiiieee ettt e e e e e et e e e e e e e e e eeeeeaeeeeeeeeeeeeeeeaes 7
Mudlet SYSEM VATIADLES.ccouvviieeiiieie ettt eee e eeae e e e et e e e eetaeeeeeeateeeeeenaareeeaeeeeeeeenaas 13
FUNCHION CAEZOTIES ...coooevvvieiiieeee ettt eee e e e eeeete et e e e e e e ettt eeeeeessesesaaaaeeeeeeessessasaaaeeeeeesessssssannnnnnns 13
BaSiC ESSENTIALScccuvvieeiiiiiieieeieee e et eeete e eeee e e eete e e eeatee e e e etaeeeeeentaeeeeeeaaeeeeeenasreeeeeraeeeeannnes 14
SEII. oo e e —————eeeeeeeete_————————eeeeeteu_——————aaeanaaeranaaaraaaaanans 14
163 410 TP 14
Database FUNCHIONScccooviiiuiiiiiiieeeeeeiceeteeee e e e e eeetaee e e e e e e e eesaabeeeeeeeessessasaaaereeeesssssssssssssssnnnnnnnnes 15
ADIAAA. ... et e e e e e et e e e e et e e e entaeeeeeeeannnas 15
4|0 BTy (ST e 1 1 PSR SRURURSR 15
ADIAND . .ot e e e e e e e e ettt e e eet—a e e e ettt e e eenraaeeeeeeeannnnes 15
OB DEEWEEI. ...t e et e et e e e e e e e e et e e e e e e e ———reeaeeraaa b ———————— 16
ADICTCALE. ...ttt e et e e e e e e e ee et e e e e et e e e et e e e eetraeeeeeeeeenannnna 16
oL e 1<) (< =T PRSP R RPN 17
6 Lo <o T USROS PRRPPR 17
41034 USRS PSSURPRRR 17
o Lo 1< 7o) s VOSSR PP PPRN 18
QDB ettt et ta e bt e ta e e beeeabe e beeerbeetbeeeentaeeenaraeeenreeeenres 18
dD:@et dAtADASE....c..eeuiiriieitieieet ettt ettt ea 18
41038 U SRRUSPUPSSR 19
410151 RSP PSURPPRRRPPR 19
4 Lo 3R T 4V U URRSPUPSRR 19
o Lo TS T o 1 A 4V OO TSRS PR PR 19
(4 Lo USRS 19
[Lo LSO 19
(4 Lo LTSRS 20
ADIMETZE UNIQUE. .. .eieutieiieeiieeiie ettt ettt e et set e et e e s taeesbeesaeeeabeessaeesbeenssesnseessseanseenssesnseesasssens 20
41038 s Lo Al 0] AT § PSPPSR 21
4 L0151 T 1 AT OO 21
41038 s 10 Y A 4 VPO PPRR 21
ADINOE TIKC. . eiieiiieiiieiteeie ettt ettt ettt et et e et eesttessbeestaeenbeeseesnnbeeeennbeeeennbeeeensaaeean 21
ADIOR ettt e et e e e et e e e e —e e e e et e e e aataeeeeeeeaannnaaaaans 21
o Lo 3T U SRR URUUTRRRRRRRRO 21
ADUPAALE. ...ttt et e et e e e et e e e aae e e baeeeaa e e e baeeanraeeabaeennnraeeeeaannns 22
Date & Time FUNCHONScocouvveiiieiieieeeeieeee ettt eeetee e eeaee e e et e e e et e e e eeaaaeeeeeeaaeeeeeetaeeeeeenssnneeees 23
JALCEIITIC I PATSE. . veeeuvreeeereeetteeetieeetteeestteeetteeeteeeeteeessseeessseeasseaassaeanssseassssesssssneeeessssssseeesennsnnes 23
GOLTIIMNIC ...ttt ettt ettt ettt ettt e e st e et eetae e bt e eabeesbeessbeenbeeasaeenseensseenseensseensaensseanseenseesnseeseenn 23
o1l B TSIo] 72101 OO PURR P 24
DiSPlay FUNCLIONSvvviiiiiiiiieeeieiee ettt et ette e e e et e e e eeataeeeeeaaeeeeeeaaeeeeeeeaasasaeseeaeeaeeeeeeas 24
4151 0] /PSPPSR 24
SNOWICOLOTS. ..ottt e et e e et e e e et e e e e ee e e e e eeaaeeeeeeaseeeeensaseeeeensnseeeennnnes 25
LA 710 5514 1S PRSPPI 26
File SYStem FUNCHIONSoeeiiiiiiiiiieeieieeeeeeiee ettt e et eete e e e ettt eeeeae e e e e eaaeeeeeetaeeeeeeaaneeeeeaneeees 27
JTO R =y, S 11 - TR PP ORI 27
LES.QTETTDULES ettt e ee e ettt e e et e e e eeaaaeeeeeeaaeeeeeeaseeeeensaseeeeenaseeeeeeeennnnnes 27
A 210 017 201 eqs o) o TR RRRRPPRRRPRRR 28
AAAATCANGAINE.evveieeeiieie et e et e e e et e e eetaeeeeeetaseeeeeaeeeeeenssseeeeeteeeeeenssseeeennes 28

FeYa [0 1Y F21 o) RS 4L A SRS PPRRT 28

AAAMAPIMEGIIUL ...ttt ettt e et e st e e bt e s st e eabe e seeenbeeaseesnseeseeennbeaeennbeeeansseeenns 29

o6 [0] e Yo} o 1 VOO URUUPS 29
AAASPECIAIEXIL. c..vveeeeiieieeeeieie e ettt e e et e e ettt e e eetaaeeeeeaaeeeeesaaeeeeeessssaseeeaeeeeeeeeeeeaeenannnes 29
(1o 1103 14 (=AU 30
ClearROOMUSEIDALA.ccoeuiiiiieiiiie ettt e e e e e eetre e e e eeaaeeeeeeeeeeeennnnnes 30
(o (T T 01t ea] U 2,4 1 5 OO 30
CrEAtEMAPLLADEL......eeieeeiieiiceeieeee e e e et e e e eara e e e e e eean 30
(oL 111 18] 0 1) SR UPPRRN 31
CreateROOIMID ...ttt eee e e e e e eeeeettar e et e e e e eeeeeassseeeressrasrsaneannnnnn 31
oS (S o N (= VPR 31
ElEtEMAPLLADEL......eeeeeeieeiee e e e et eeearaaeeeeeaann 31
o 1= 1S 7<) e Yo o s WP UUUURR 31
FELATEAROOIMNS. ...ttt e e eee et e e e e e e e eeeetbaaeeeeeeeeeeeetassseeeeeeeesenesssrrrnnes 32
el 7N Ao 1 21 o) (<SSP RRRSP 33
getCustoMENVCOIOTTADIC.c.uiiiiieiieiieeieee ettt ettt saee et e e baee e 34
o1\ Fe1 o) -1 o TS O PSRRI 34
GEEMAPLLADECLS.ueieiiieiie ettt et st e b e et eebeenabeenbeeenreeaens 35
(oY (016 101 (<) &g W o) w1 2ROt 35
GREPALN. ...t et st b et e e bt et e e bt e snbeenseesnreeens 35
GEEROOIMIATEA. ... veieeeeiiiee ettt ettt e e et e e e ettt e e et e e e e bt e e e esasbeeee s nsaeeeeannssssnneeeaeaaaaeeeeens 36
FEtROOMATECANAINIC. .. vvvveiiieeeiieiiiiieeeee e e ettt e e e eee e e e e e e eeeeettrreeeeeeeeeesettrrreeeeeeeesennssannnnn 36
FEtROOMCOOTAINALES. .. .eeeiieiiiiiiiiieeiee e ettt e e eeeee et e e e e e ees bt e e eeeeeeeesessssereeeeeeessensnssseesanes 36
GEROOMENIV. ...ttt sttt e sttt e st e e st e e e sabeeeaeeeenneeas 36
e L0100 0] L USRS 37
getROOMIDDYHASH.oiiiiiiiiiciiee ettt ettt e e e saeeenbeeen 37
e0o14 20100 0 410210 < U SR 37
GEUROOMS. « ..ttt ettt ettt et e et e e bt e e e bt e e st b e e e e s e bbb eeeeeeanraaeeens 38
FEtROOMSBYPOSITION.eiiiiiiiiiiiiiiieieee ettt eeeee et e e e e e eee bt e e e e e e e eeseaasaaeeeeeeessennnsssnesanes 38
EtROOMUSEIIIALA.uvvvvieiieeieiieiiieeeee e eeeecre et eeeeee et e e e e e eeeeettarreeeeeeeeeessstsreeseeeseeeseernees 39
(o0 a0Y0) 8 MY T4 oL SO 39
GOESPCCIALEXIEScvvveeeeeiieieeeeite e et e ettt e e et e e e eeta e e e eeaaeeeeeeareeeeeetaeeeeeesaaeeeeenanseeeeeesssssreeess 39
FEtSPECIALEXIESSWADuvvveiiiiiii ettt e e e e et e e e e e e e e et e et e e e eseesssbaeeeeeeseseeeeeenees 39
GOLOROOMM. ...ttt et ettt e ettt e ettt e e bt e e s bt e e s bt eesabeeesabteesabeeeeennnnes 40
BASEXIELLOCK ..vvvveeeiee ettt e e e e e e ettt e e e e e e e ee e eee e e e e e e e e e e et 40
hasSPECIAIEXIELOCK. .. cuvieiieiieeiie ettt ettt ettt et et e st e e b e enneeeennes 40
o0 o1 F e 410 R0 Yo 4o OO 41
LOAAIMAD. ...ttt et ettt et ettt et e et et e et e e ht e e bt e tteenbeeeennbeeeennbeeeennbeeenn 41
LOCKEXIE. e tvveeeeeee ettt e e e et e e e e e e e eesaaaa e eeeeeeseasasaaeeeeeeeeeesansssesreeeeessssssnsssnnnnnn 41
LOCKROOM. ...ttt e e e e et e e e etae e e e eeataeeeeeeaseeeeeetsaeeeeenaseeeeeeeennnnnsnnens 42
LOCKSPECIALE XTI . vvvvviiieieieiiieieiee ettt eeet e e e e e e e e et eeeeeeseeesssaaeeeeeeseeeeeeeeserasssaansnnnnes 42
TEMOVEMAPEVEIL......ooiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesereesessssasssesssasssrsrsrsssrsssraeeessssrann 42
140101001 2. 11 - TSR 43
(0101001 10 T6) (G RO UUUUTRRRRRRN 43
A\ £ o PRSPPI 43
SEATCHROOM. ...t et eae e e e e e et e e e e et e e e e e etaeeeeeetaeeeeeennnns 43
SCEATCANAINC.......ceeiiiiiiiiiiiiieeeeeeeeeeeee ettt ettt e et et e e e ettt e e e eeeeeeeeeeeeeeeeee e e e e eee e aaaees 44
SEtCUSTOMENVCOIOT.uvviiieeiiiee ettt eee e e e et e et e e e eeaaaaeeeeeeeeeeeeeennnsnnnnes 44
10 2,4 | SO 44
SCUGTIAMOUAE.cuvveieeeeieiee ettt e et e e et e e e eeaa e e e e e aaeeeeeeaaeeeeeeaaeeeeeeasseeeeeessseeeennnns 46
o100 (016 100 1S S W e W LA OO 46
10 a0 10) 817 AN Loy: PO SRR 46

SEEROOIMICIIAT ... e e e e e e et e e e e e e e e e e e e e eeeeeeeeeaanaaaeeeeeeeeanaaeaee 46

SELR OOIMICOOTAINALES. ... e e e e e e e e e eennnaaneeeeen 46

SEtROOMENV ... 48
SEtROOMIDDBYHASN.eoiiieiiiiiiieieeee ettt ettt e sttt e st e e e e e esbeaeenes 48
SEtROOMNAINEC.coiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee ettt e e e e e e ee e e e eeeees 48
SCtROOMUSEIIIALA.uvvvreeieeieeiiiiiiieee e e eeeecrree e e e e e eee et e e e e e e eeeeetarrereeeeeeeeeeeaaaasaeseeeeesenrrraees 48
SEtROOIMWEIZNTcoiiiiiiiiiiiice e e e e e e e et eeeeeeeeeeasaeeeeeeeessasaannnns 49
SPEEAWALK.eeneiieiiieiie ettt ettt ettt e et e st e et e e bt e st e e bt e eabeenbeeesbe e beesateenbeeennaeaan 49
10700 & B0sd 1 HTEd 14 eYe) o s WU ORI 50
Miscellaneous FUNCHIONScccveieieiiirieeieiieeeeeeeee e e eette e e eeeteeeeeeeaeeeeeetaeeeeeesreeeeeeanreeeeesseeeeannnns 51
JLSTSTe I B Do) £ SROPPRR 51
EXPANAATLIAS.eeeteeiie ettt ettt ettt st et e et e e tee st e esseeeabeebeesaseenseeeabeeseesnbeeseeenbeennneeas 51
JLSTSTe B Do) £ PRUPPSR 51
etMUAIEtHOMIEIDITvvieeeieiiiie et e et e et e e e e etre e e e e e aaaaaaaeeeeeeeeas 52
PLAYSOUNAEIIC.eiiiiiieeieeee et e et e e e e e e e e e et e e e e e e ssbeeeeesnsaaaeeeeennsssaaeeeas 52
registerAnonymousEVENntHAaNAIET............coovviiiiiiiiiicciee e 52
] 0721014 4 FO TR 53
Mudlet ObJECt FUNCLIONSuvviiieiiiiieeiiieee et eeeee e eette e e et e e e eetaeeeeeeaaeee e e e e e aaanssarreeaeeaeeeaeeas 53
APPENACINALINE.oeeiiiiiiiieiiie e ee et e e e e e e e e st eeeeeeeeseabaeeeeeesesssassssreseessssssssnnnnnn 53
CLEArCIMALLINE. .. .veieeeeieie ettt e et e e et e e eetaeeeeeeaaaeeeeeareeeeeeaaeeeeeeaseeeeeeeennnnnes 53
CIEALESTOPWALCH. ...coiiiiiiiieeeceee e e e e e e e e e et e e e e e e s eenneenas 53
QISADIEALIAS. .. vveeeeeeieeee ettt e et e e e e e et e e e e eetaaeeeeetaeeeeeetaaeeeeeeareeeeeeennennnnnnes 54
41 0] 1<) (o U SRRUSPRPSRR 54
QISADIETIIMIETvvveeeeeiiee ettt eete e e et e e e et e e e e eeae e e e eetaeeeeeeaseeeseessseeeeesreeeeennnnnnes 55
8T 1) (ol 5 T USSR 55
CNADICALLAS.c.vvviieeeieie ettt eee e e e ettt e e et e e e et e e e e e eaa e e e e eeaeeeeeeaaaeeeeetreeeeeeenannns 55
[e0F21 0] () SN RS USRPSRRRPSR 56
CNADICTIINICTeee ettt e e e ee et e e e eetaeeeeeeaaeeeeeeaaaeeeeeeaseeeeeeaseeeeenasseeeeennnns 56
[0tz o) (51 B e <) PSP PPUR 56
EXISES . vveeeeetrreeeeetteeeeeeteeeeeeetaeeeeeeitaeeeeeeteeeeeeataeeeeeetataeeea—aeeeeaaataeeeaaaaaeeeataeeeeearreeeeenrraeeeaareeens 57
GEEBULIONSEALE.eeeeiiiiie ettt e e ettt e e et e e e st e e e s sttt e e e e ntbeeeeensttneeaeeeeeas 58
INVOKEFTIEDIALOE. ...eeeeevvieeeeieee et e e et e e e et e e e e eaaee e e eeaaeeeeeeaaeeeeeennnes 58
ISACTIVE. .. e ettt et e e et ettt e e e e e e e et eeeeeeeeseeesaaa e eeeeeeeeeeaaa b a—aaeteeeeerearaaatarraaa——————_ 58
JES] 0 400011 SO PRSPPI 59
AN TR 59
KIIITIINICTttt et e et e et e e et e e e eeaaaeeeeetaeeeeeenaseeeeeeaaseeeeetaeeeeennseaeeeeeens 59
T L T) PR RSR 60
PEIMMIALIAS. ... eieneieeetie ettt ettt et ettt e st e e bt e teeeabe e seeease e seeenbeenseesaseenseesaseenseesnseeeannneeeansees 60
01100016 1 (01010 OSSR 60
PEIMREGEX TTIZEET eeeutieeiiieiie ettt ettt ettt et et e et e e etteesbeesteeenbeesabeenbeesnsbeeeensseeeennseeeennees 61
PEIMSUDSIIIN G TTIGEOT . .eeiieiieiiiieeeeeee ettt ee e e e e eeetae e e e e e e e e e aeeeeeeeeessesassaeesaesessssannnnnnnssnnss 61
01510001 000 1S) OO R PP 62
0100014 @300 16 1 55001 SRR 62
FAISCEVENL. .. veeeiiieiee ettt e e e e et e e e et e e e etae e e e e ear e e e e earaaaaaaaeens 63
14510151001 01) SRRSO 63
LESCESTOPWALCH. ... e e et e et e e et e e et a e e e as 64
SEtCONSOLEBUTTRISIZE. ... e e e e nas 64
S TTIZEEIStAYODEN.vvvvieeeeeieeee ettt eeete e e e e e e et e e e e aeeeeeeaaaeeeeeeaaeeeeeeareeeeeeasseeeeennnns 64
STATESTODWALCH. ... e e e e et e e e e e e eeeeeeeeeeeeeeeeeeeeeeeraaes 65
STOPSIOPWALCH. ... e e e ee e e et e e e e e e e e eeareeeeerareeeeeennes 65
105300100 2N L 1TSS 65
j7s30010) 3151041010) i BT Lol B0 od =) OO RSP RRRTPR 65

[1=100101 @Xe) (o) ol B W T <{(I SUUUUTTRRR OO PP OUP PP RPRRRRRUPPP 66

EEMPEXACEMALCHTTIGGET oo oot 67

10530010) BV a Tl B G T o) ST OO RPTRRRRRRR 67
1110010) ST e4o). 4 B U o) O USSP 67
105300101 010 1<) SRR 68
10 0010l B L0 OSSR 68
1053 0010) 32018101 PRSP PPPSPRR 69
NetWorking FUNCHOMNSveeuiiiiieriieiieeiie ettt ettt teste et e s te e bt e siaeeteeseaeenseesssesnbeesseesnseenssesnseenes 69
QISCOMIMECTcieieeieeeeeiee ettt e e e eeee e e e e e e e et eeeeeeeeeetastaeeeeeseeseeensaaaereeeeeesssnrasrrrreeeseeeenas 69
AOWNIOAAFTL.vvvieeeeeiieee e e e e e e e e e et e e e eeaaeeeeeetaeeeeeenaeaeeennnnes 69
GEENETWOTKIL ALEIICY ... uvvvvvviiiiei ittt e e e e e et e e e e e s eeeaaataeeeeeeessensnsbareeeeeseseeeeeenees 70
o) 01511104 TSP ROPRPR 70
TECOMNMECE. ..ooiiiiiiiiiii e, 70
o 116 1A N | O U USSR UUUTURRRRRRRURRROt 71
3016 (6 11Y (O] &SRR RURUUURRRN 71
SEIMAITC ..ottt e et e et e e e et e e e e e e e e e e ta e e e e e tteeeeeeraaeeeereeeeeeaannnnnrae 71
SendTelNetChannEll02.........coovuurieeieeee ettt e e eeeet e e e e e e eeab e e e e e e e sessasaaeeeeeeeeeeeeeeeererane 72
StrING FUNCHIONSvvviiiiiiiiieeeeiieee ettt e ettt e e e et e e e e tta e e e e eettaeeeeeeaseeeeeeaseeeeeearseeeeentrreeeaeaeaeens 72
188 0TS 014 (PSSR 72
SEINE.CRIAT. .ottt ettt et e st e e bt esateesbeeesbeenbeensaeenbeenneeenbeenneeenbaeenn 72
180 0TS | R RTSR 73
SENE.AUIND . ..ottt ettt ettt e et e st e et e st e eabeesateenseessbeenseessbeenseesnsseeeansseeeansseesansseennns 73
18 80T 1 o] [0 T RS PS 73
SEINZ.EIIAS . ..ottt ettt ettt ettt et et e et e et e et e e tee e st e enaeessbeeseeeabeenseeenbeenbeeeenbeeeenbeaeanns 74
180 0TS0 1016 PO PR 74
SEING FINAPALIEIM.vvveeeeiiee ettt et eee e e e et e e e eetreeeeeetareeeeeaaeeeeeeeeennnnes 74
180 TS (0 8 00V | PSP 75
StrINg. GENINOCASEPAIEIM.vveeeieiiiieeeeieee ettt e e e e et eeeeeaaaeeeeetreeeeeennnnnens 75
180 0TS 1016 PRSP 75
SEING. EMALCH.eeeiiieiie ettt ettt et e et e et e st e e bt e sab e e bt e s nbeebeesabeenbeeenraeeens 76
1 0TS 4] o PSSR 76
18007 (10 AR S R PUOPRRRPRRRPPR 76
180T (014 PO PURRT 76
180070 072 110] 1 OO PSPPSR PRORTSPRRPPRO 76
180T 4] OSSR PPUR 77
SEIIIIZ.TEVEISE. .. vvteeeeeureeuteenteeneteeteesseeenseenseesnseesseeeaseenseesnseeseesnseenseesnseenseesnseanseesnseensseeesnsseeennen 77
18 0TS o) L SRR 77
ST SEATTESeeteeeie et eite et et et e e et et e et e e beesabeesseesaaeenseessbeenseessseenseessseenseesnseesnnseeesnnseeennns 78
180T 0o TSRS 78
1800715 11 (< PRSP PPRPPRRN 78
180 0TS 011 PSR 79
1000 T 0 10101S) OSSP RUPPRRPPPRR 79
o) (<0 SV 0 1o3 5 e 4 T 80
17210 (S 103 001) (530013 1 L SOUUUO OO SSSP P U PP U R RN 80
1221 0] (R e o) s Loy | FURR RO PR 80
£ADIE.COMEAINS.veeeeeiieee ettt e ettt e et e e e e ta e e e e eeataeeeeeaaeeeeeeaseeeeeenneeeeeeaneaeens 81
1221 0] [0 0 (Y- 1o] 1 D 81
1721 0) (S 10113 4oYore 5 (o) 1 DU TN PR UUUUURRRRRRN 81
1221 0] (I 10 1-T) o ST 81
1721 0] (ST 1016 (53 G o) SO RO RPR 82
1721 0] (T TSI <3101 01 /SR UPUURSRR 82
1721 0) (S8 e Y- Vo KOOSR URTTN 82

LA TIIAKIY ettt et e e e e e e e e et —eeeeeee et e ———————aeeeetaa———————————————————anaaaeenn 82

72 10] (<30 0 B 11010) s OO PP &3

17:10) (T8 W 101011 0) (5100153 11 USSP 83
j7:10] (S8 0 B 00 L1<) 6T <Y1 1010 DO OO OPUPRU USRI 83
1721 0] (00 (61« [PR RPPRP 83
17210 (S HS) 0010 A= OO USSP URETUUN 83
1221 0] [TRT: A 4 SO 83
1721 0] (S Y0 O OO USROS PUERRUT 84
1221 0] (TR (= RSOOSR 84
1721 0) (SR Y15 4 RO SRR PUUUUTRRRRRRRN 85
1721 0] LT84 10 Lo) 4 (<SPPSR 85
1721 0] (S 11016 = 1< OO PRSI UUURRRRI 85
17210] (TR0 1110 s VU 85
UL FUNCHONS ..vviieieiieeeeeeeitee e eeeae e eette e e eete e e eeetaeeeeeeaaeeeeeeaaseeeeetaaeeeeeaseeeeeeasaaeeeeeeeeeeennnssssssrenrees 85
Fi10) 0153 118 13101 i (<) (USRS 85
Dttt et e b et e bt e at e e bt e nhae e be e hteenbeenteeenbeenneeeenees 85
(o721 (0] R) 113 4SO 86
[oTere] 110 TR TSP UUUUURRRRRRRO 86
(o 0 TLe o)« SRR 87
CLlearUSEIWINAOW........uvvieiieiieee ettt et e ettt e e e et e e e e eeaaaeeeeetaeeeeeeaaeeeeentsreeeeeennnnnes 87
CLEATWINIAOW ... et et e e e e e e e e e e e e e e e sessssaaeeeeeeseesaasbaannnnnnnnnes 87
{61010 OSSPSR PPPPRPP 88
(S AoY: 1<) 2101 i () (P 88
CIEALECOMNSOLC. ...t eeiriee e ettt e ettt eeet e e e et e e et e e e etaeeeeeeaaeeeeeeaaeeeeeeetseeeeeearaeeeeeeeeenennnnnnes 89
(e 10 @ £ 11 Lo PP SPPRN 89
CIEALELLADEL. .. oot e et e e e et e e e e e e e e e e eannaes 91
CIEAEIMINICONSOLE. ...veviiiieiieiiiiieeeee ettt e e e eeeee e e e e e e ee st eeeeeeeeeseeaasaereeeeeesesbasssannnnnnnns 92
AECINO. ..o et e et e e et e et e e et e e e ee—aaeeeeeeeeeennaannan 93
o =3 (S 7<) 5 1< 93
AESCIECT. .. vttt e eea e e ettt e e e et e e e et e e e e eeaa e e e e eearaeeeeaaaaaeeeetreeeeeeeaannas 94
[<1e] 110) 5101 O 94
CCNOUSEIWINAOW.....eeiiiiiieeeeiiee ettt e et e et e e e eete e e e eaaeeeeeeaeeeeeeetaeeeeeeeeeeennnnnes 95
[<Ted 110) 0] 0101 o PSR SRRURSRR 95
Bttt ettt ettt ettt e e ht e e ab e e hte et e e ht e e bt e e entaeeenneeeennees 96
e 7o G10] o) USSP 96
GEtCOLOTWILACAId.uvvieieiieee e e e et e e e et e e e e eaaaaaraeeeeees 97
o1 @L0] 1110101101001 1<) OSSPSR 97
(o1 {1015 (10110 51 = TSSO URSURT 97
el e G0 () PSRRI 98
GOLLANECOUNL.veeueeeitietie ettt ettt et et e et e st e et eeeateesbeessaeenseeesbeenseessseenseesnseenseesnseenseesnsaeennn 98
o1 D1 0 Ll ORI 98
GOLLANEINUINDETcuvviiieeiiiie ettt e e e e e e eetaeeeeeetaeeee e e taaasrrreeeeaeaeeeeeeeans 99
getMaINCONSOIEWIALN. ... e e e e e e e 99
RASFOCUS. ...ttt et e e et e e e et e e e et e e e eeaae e e e eeaa e e e e earaaaaaaaeens 99
FEtMAINWINAOWSIZE.eevivieiiiiie ettt e e e e e e e e e et eeeeeessenssbareeeeeeeeeeeees 100
GEtStOPWALCHTIINC. . .veee ittt e et e et e e e et e e eeaaeeeeeeareee e e e e naassnneeeees 100
handleWIindOWRESIZEEVENL.cooieuriiiiiiei ettt ee e e e e e e e e 100
RASFOCUS. ...ttt e e e et e e e et e e e et e e e e e eaa e e e e eaaaaeeeetaaanarees 101
1 TSTo] o T Y 101
RIAETOOIBALcuvveieeetiee e e e e e e e e et e e e eeta e e e e eeaaaeeeeeaneeeeeearaeeeeens 102
0T oA 116 1o L 2 102

10 1YS o 4 1o, < FOUTUTU U RRRRRPN 104

Ry AN 1131 275 o) o) RO 104
RN 11 S 0] (o) TR PRTPR 105
INIOVECUTSOT ... e nnnnnnnnnnnnnnnnnnnnsnnsnnnnnnnnnnsnnnnnnnnnnnnnnnnsssessssssnns 106
MOVECUISOTENA.ooiiiiiiiiieeeeee e e e ee e e e e e e eeaaaaaaeeeeeas 108
INOVEGIAUZE. .. .veeeeiiiieeeeeiiteeeeeitteeeesttteeeestaeeeesaasteeessanteeeeaansseeessnsseessanssseesannnssssaneeeeeaaaaasesennns 108
MOVEWINAOW.vviiiiiiiiie ettt e e e e et e e e etaeeeeeeaaeeeeeeaaeeeeeeenasssrrreaeaaaaaeeeeas 108
OPCNUSEIWINAOW.......coiiiiiiiiiiiei ettt e e e e e et e e e e s e e ee et aeeeeeeessenasrarreeeeeeeeeeeeeens 109
DASEE. .ttt eetee et ettt et e et e e et e bt e et e et eeea b e e h e e eab e et eeeat e e bt e st e e teeeateenbeeenbaeeennbeeeennteeeannreeens 109
PASLEUSEIWINAOW....evvviiiiiiiiiiitieieee e ettt e e e e e eeettt e e e e e e e eeaabaaeeeeeeeeeesaaeesaeeesaaaesaeeseeeerenees 110
0101 i 0, SO OSSPSR 110
L1 0] 2 Vo< SR PPPRR 110
J0s10) Fo 11T | O RTUPPRPRU PP 111
TESIZEWINIAOW . ..uvvviiiiei ittt e e e ee e e e e e e e e e esaaat e e e e e e e essensastaeeeeeseesensssssssasssnnnnnnnnes 111
SCIECtCAPTUIEGIOUD. .. vvveeeeerreeeeeeireeeeeeetteeeeeetaeeeeeeteeeeeeetaeeeeeeaseeeeeesseeeeeesseeeseeisseeeeeeeeaeasnnnnnres 111
S (<ol Yoo 5 (o) VOO 111
SCLECESEIIIIG . .. eeueteeutieetieette sttt et et e et e st e et e stt e e bt e s aaeesbeesabeenbeessbeeaseesnsaenseessseenseesaseenseeesnseaeanns 112
Te14 5 7o @10 (o) USRS 112
10 370) [« PN TR USROS RRRTTRRRT 113
Y14 al e @0 () RS SP 113
SEUGIAULZEL. ..t eteeeeitte ettt ettt ettt e ettt e ettt e ettt e st e e s bt e e sabe e e e ab e e e abee e et e e eabee e bt e e e bt e e sbe e e e bt eeeeeennrees 113
10 71 5 oF RO SR 114
SEtMINICONSOIEFONESIZE.ceocvviieieeiiiee et e e e e eeeaaeaeeeeas 114
SEtTEXtFOIMAL......cceiiiiiiiie e, 114
SCEUNAETIINE. ... e et e et e e e et e e e e eaae e e e e e naaaaaraereeaaaeeeeeeeans 114
SEEWINAOWWTAD. ...ceviiiiiiiiiiieeeeee et e e e e e e e e ettt e e e e s e e en e eeeeeeeas 114
SNOWCAPTUTEGTOUPS. ...eeeevvveeeeeiieieeeetteeeeeeieeeeeeeteeeeeeetaaeeeeeeaseeeeeeaseeeeeeseeeeeenasseeeeesssssseeeeeeens 114
SHOWMUIIMALCRES. ..o i e et e e e e eeaeeeas 115
SNOWWINAOW.......uvviiiiieiiiic ettt e et e e e et e e e e eta e e e e eeaaaeeeeeeaaseeeeearaaeeeeens 115
Jue10) Yoo WA 1 (6 To:) (o PO RN 115
JSTYe10 aL0) u 0T) OO U TR 115
) (o1 @30 15 4= 110 51 = U 116
SetBACKZIOUNACOION.iiiiiiiiiie ettt e et e e e et eeeeeaaaaeeeees 116
setBackgroundlmage.eeeeuiieeiiieiiiee ettt ettt e et e e et e e e naae e e ennnnnes 117
103701 50 3701110) 1 1 DERUURRRRRRRNN TSSO UPPPRRT 117
10 0] (6 (534 ©70) (o) S RRRUURR R 118
10 370) (s (534 1S i SUUR TN USROS RRRRRRRRR 118
10 0] (6 (38 S T 4| SO 118
Yeld 510116 (<) K0 o USROS PRUTPRR 119
10 1013 (@ o) S OF:1 1| oF: Vo) U 119
SEELANIK . ..ttt ettt e et e e e et e e e et e e e e eta e e e eeeateeeeetrteeeeetaeeeeetreeeeannnnes 120
SELLADCISEYIESHEET. ... uvvvvveieiiee ettt e e e e e e e e e et ———— 120
114 0] 0101 o TSP UPTPPPO 121
SHOWTOOIBAL.......uviiiiiiiiiiieeeee e e e e e e et e e e e e s eesab e eeeeeeesaeeeeeeeeeeeeaaaes 122

Alphabetical Function Index

addAreaName

addMapEvent

addMapMenu
addRoom

addSpecial Exit

appendBuffer
appendCmdLine

B

Bg
C

calcFontSize
cecho

centerview
cinsertText
clearCmdLine
clearRoomUserData
clearSpecialExits
clearUserWindow
clearWindow

copy

createBuffer
createConsole
createGauge
createl abel
createMaplabel
createMapper
createMiniConsole
createRoomID
createStopWatch

datetime:parse
db:add

db:aggregate
db:AND
db:between
db:create

db:delete

dbreq

db:exp

db:fetch

db:get database

F

G

b:gt

db:in_

db:is_

db:is _not_nil
db:like

db:1t

db:lte

db:merge unique
db:not_between
db:not eq
db:not_in
db:not like
db:OR

db:set
db:update
decho
deleteArea
deleteline
deleteMaplabel
deleteRoom
deselect
disableAlias

disableKey
disableTimer

disableTrigger
disconnect

display
downloadFile

echo

echolink
echoPopup
echoUserWindow
enableAlias

enableKey
enableTimer

enableTrigger
exists

expandAlias

feedTriggers
feedTriggers
fg

getAreaRooms

getAreaTable
getBgColor

getButtonState
getColorWildcard

getColumnNumber
getCurrentLine
getCustomEnvColorTable
getFgColor

getlLineCount
getlLineNumber

getLines
getMainConsole Width
getMainWindowSize
getMapLabel

getMapLabels
getModulePriority

getMudletHomeDir
getNetworkl atency

getPath

getRoomArea
getRoomArealName

getRoomCoordinates

getRoomEnv
getRoomExits
getRoomIDbyHash
getRoomName
getRooms
getRoomsByPosition
getRoomUserData
getRoomWeight
getSpecial Exits
getSpecialExitsSwap
getStopWatchTime
getTime
getTimestamp
gotoRoom

H

handleWindowResizeEvent
hasExitlLock

hasFocus

hasFocus
hasSpecialExitl.ock

hecho

hideToolBar

hideWindow

highlightRoom

insertLink
insertPopup
insertText
invokeFileDialog
10.exists

isActive
1sAnsiBgColor

isAnsiFgColor

isPrompt

killAlias
killTimer

killTrigger

Ifs.attributes

loadMap
lockExit
lockRoom
lockSpecial Exit

moveCursor
moveCursorEnd

moveGauge
moveWindow

openUrl
openUserWindow

paste
pasteUserWindow
permAlias
permGroup
permRegexTrigger
permSubstringTrigger
permTimer
playSoundFile

refix

printCmdLine

R

raiseEvent

reconnect
registerAnonymousEventHandler
remember

removeMapEvent

replace

replaceAll
replaceWildcard

resetFormat
resetStopWatch
resizeWindow
roomEXxists
rooml ocked

saveMa
searchRoom
selectCaptureGroup

selectCurrentl ine
selectSection
selectString

send

sendAll

sendGMCP

sendlrc
sendTelnetChannel102
setAreaName
setBackgroundColor

setBackgroundImage

setBgColor
setBold

setBorderBottom
setBorderColor
setBorder[eft
setBorderRight
setBorderTop
setConsoleBufferSize
setCustomEnvColor
setExit

setFgColor

setGauge
setGridMode

setltalics
setLabelClickCallback
setlabelStyleSheet
setLink
setMiniConsoleFontSize
setModulePriority
setPopup
setRoomArea
setRoomChar
setRoomCoordinates
setRoomEnv
setRoomIDbyHash
setRoomName
setRoomUserData
setRoomWeight
setTextFormat
setTriggerStayOpen
setUnderline
setWindowWrap
showCaptureGroups
showColors
showMultimatches
showToolBar
showWindow

sSpawn

speedwalk
startStopWatch

stopStop Watch

T

string.byte
string.char
string.cut
string.dump
string.enclose
string.ends
string.find
string.findPattern

string.format
string.genNocasePattern
string.gfind
string.gmatch
string.gsub
string.len
string.lower
string.match
string.rep
string.reverse
string.starts
string.sub
string.title
string.trim
string.upper

table.complement
table.concat
table.contains
table.foreach
table.index of
table.insert
table.intersection
table.is_empty
table.load
table.maxn
table.n_complement
table.n_intersection
table.n_union
table.pickle
table.remove
table.save
table.setn

table.size

table.sort
table.union

table.unpickle
table.update

tempAlias
tempBeginOfLineTrigger
tempButton
tempColorTrigger
tempExactMatchTrigger

tempLineTrigger
tempRegexTrigger

tempTimer

tempTrigger

U

UnHighlightRoom

W

wrapLine
wrapLine

Mudlet System Variables

Mudlet defines several global Lua variables that are accessible from anywhere.

Built-in Lua Variables

Variable Name

Description

comand

This variable holds the current user command. This is typically used in alias
scripts.

line

This variable holds the content of the current line as being processed by the
trigger engine. The engine runs all triggers on each line as it arrives from the
MUD.

matches[n]

This Lua table is being used by Mudlet in the context of triggers that use Perl
regular expressions.

matches[1] holds the entire match, matches[2] holds the first capture group,
matches[n] holds the nth-1 capture group. If the trigger uses the Perl style /g
switch to evaluate all possible matches of the given regex within the current line,
matches[n+1] will hold the second entire match, matches[n+2] the first capture
group of the second match and matches[n+m] the m-th capture group of the
second match.

multimatches[n

1{m]

This table is being used by Mudlet in the context of multiline triggers that use
Perl regular expression. It holds the table matches[n] as described above for each
Perl regular expression based condition of the multiline trigger. multimatches[5]
[4] may hold the 3rd capture group of the 5th regex in the multiline trigger. This
way you can examine and process all relevant data within a single script.

Function Categories

Basic Essential Functions: These functions are generic functions used in normal scripting. These

deal with mainly everyday things, like sending stuff and echoing to the screen.

Database Functions: A collection of functions for helping deal with the database.

Date & Time Functions: A collection of functions for handling Date & Time.

Display Functions: A collection of functions for displaying or formatting information on the screen.

File System Functions: A collection of functions for interacting with the file system.

Mapper Functions: A collection of functions that manipulate the mapper and it's related features.

Miscellaneous Functions: Need verbiage here

Scripting Object Functions: Need verbiage here

Networking Functions: A collection of functions for managing networking.

String Functions: These functions are used to manipulate strings.

Table Functions: These functions are used to manipulate tables. Through them you can add to
tables, remove values, check if a value is present in the table, check the size of a table, and more.

Ul Functions: These functions are used to construct custom user GUIs. They deal mainly with
miniconsole/label/gauge creation and manipulation.

Basic Essentials

These functions are generic functions used in normal scripting. These deal with mainly everyday
things, like sending stuff and echoing to the screen.

send

send(command, show on screen)
This sends "command" directly to the network layer, skipping the alias matching. The
optional second argument of type boolean (print) determines if the outgoing command is to be
echoed on the screen.

See also: sendAll()

W Note: If you want your command to be checked as if'it's an alias, use expandAlias() instead -
send() will ignore them.

send("Hello Jane") --echos the command on the screen
send("Hello Jane", true) --echos the command on the screen
send("Hello Jane", false) —--does not echo the command on the screen

-— use a variable in the send:
send ("kick "..target)

echo

echo(windowName, text)
This function appends text at the end of the current line. The current cursor position is
ignored. Use moveCursor() and insertText() if you want to print at a different cursor position.
If the first argument is omitted the main console is used, otherwise the mini console

windowName.
Example:
echo("Hello world\n") -- writes "Hello world" to the main screen.
echo("info", "Hello this is the info window") -- writes text to the mini

console named "info" if such a window exists

Database Functions

These database functions make using a database with Mudlet easier. They are optional, if you are an
expert in SQL, you can use LuaSQL's sqlite driver directly within Mudlet - see it's manual here.

db:add

db:add(sheet reference, tablel, ..., tableN)
Adds one or more new rows to the specified sheet. If any of these rows would violate a
UNIQUE index, a lua error will be thrown and execution will cancel. As such it is advisable
that if you use a UNIQUE index, you test those values before you attempt to insert a new row.
Example

--Each table is a series of key-value pairs to set the values of the sheet,
--but if any keys do not exist then they will be set to nil or the default
value.
db:add (mydb.enemies, {name="Bob Smith", city="San Francisco"})
db:add (mydb.enemies,

{name="John Smith", city="San Francisco"},

{name="Jane Smith", city="San Francisco"},

{name="Richard Clark"})

As you can see, all fields are optional.

db:aggregate

db:aggregate(field reference, aggregate function, query)
Returns the result of calling the specified aggregate function on the field and its sheet. The
query is optional.
The supported aggregate functions are:

* COUNT - Returns the total number of records that are in the sheet or match the query.
* AVG - Returns the average of all the numbers in the specified field.

* MAX - Returns the highest number in the specified field.

* MIN - Returns the lowest number in the specified field.

* TOTAL - Returns the value of adding all the contents of the specified field.

Example

local mydb = db:get database("my database")
echo (db:aggregate (mydb.enemies.name, "count"))

db:AND

db:AND(sub-expressionl, ..., sub-expressionN)
Returns a compound database expression that combines all of the simple expressions passed
into it; these expressions should be generated with other db: functions such as db:eq, db:like,
db:1It and the like.

This compound expression will only find items in the sheet if all sub-expressions match.

http://www.keplerproject.org/luasql/manual.html

db:between

db:between(field reference, lower bound, upper bound)
Returns a database expression to test if the field in the sheet is a value between lower bound
and upper_bound. This only really makes sense for numbers and Timestamps.

db:create

db:create(database name, schema table)
Creates and/or modifies an existing database. This function is safe to define at a top-level of a
Mudlet script: in fact it is reccommended you run this function at a top-level without any kind
of guards. If the named database does not exist it will create it. If the database does exist then
it will add any columns or indexes which didn’t exist before to that database. If the database
already has all the specified columns and indexes, it will do nothing.
The database will be called Database <sanitized database name>.db and will be stored in the
Mudlet configuration directory.
Database tables are called sheets consistantly throughout this documentation, to avoid
confusion with Lua tables.
The schema table must be a Lua table array containing table dictionaries that define the
structure and layout of each sheet

Example

local mydb = db:create("combat log",
{

kills = {
name = ""
area = "",
killed = db:Timestamp ("CURRENT TIMESTAMP"),
_index = { {"name", "area"} }
b
enemies = ({
name = "",
city = "",
reason = "",
enemied = db:Timestamp ("CURRENT TIMESTAMP"),
_index = { "city" },
_unique = { "name" },
_violations = "IGNORE"

})

The above will create a database with two sheets; the first is kills and is used to track every
successful kill, with both where and when the kill happened. It has one index, a compound
inde tracking the combination of name and area. The second sheet has two indexes, but one is
unique: it isn’t possible to add two items to the enemies sheet with the same name.

For sheets with unique indexes, you may specify a _violations key to indicate how the db
layer handle cases where the unique index is violated. The options you may use are: * FAIL -
the default. A hard error is thrown, cancelling the script. * IGNORE - The command that
would add a record that violates uniqueness just fails silently. * REPLACE - The old record
which matched the unique index is dropped, and the new one is added to replace it.

Returns a reference of an already existing database. This instance can be used to get
references to the sheets (and from there, fields) that are defined within the database. You use
these references to construct queries.

If a database has a sheet named enemies, you can obtain a reference to that sheet by simply

doing:

local mydb = db:get database ("my database")
local enemies ref = mydb.enemieslocal name ref = mydb.enemies.name

db:delete

db:delete(sheet reference, query)
Deletes rows from the specified sheet. The argument for query tries to be intelligent:

« Ifitis a simple number, it deletes a specific row by row _id

« Ifitis a table that contains a _row_id (e.g., a table returned by db:get) it deletes just that
record.

* Otherwise, it deletes every record which matches the query pattern which is specified as
with b:get.

 If the query is simply true, then it will truncate the entire contents of the sheet.

Example

enemies = db:fetch (mydb.enemies)
db:delete (mydb.enemies, enemies[1l])

db:delete
db:delete
db:delete
db:delete

mydb.enemies, enemies[l]. row id)

mydb.enemies, 5)

mydb.enemies, db:eqg(mydb.enemies.city, "San Francisco"))
mydb.enemies, true)

—~ o~ o~ —~

Those deletion commands will do in order:

1. one When passed an actual result table that was obtained from db:fetch, it will delete the
record for that table.

2. two When passed a number, will delete the record for that row_id. This example shows
getting the row id from a table.

3. three As above, but this example just passes in the row id directly.

4. four Here, we will delete anything which matches the same kind of query as db:fetch uses--
namely, anyone who is in the city of San Francisco.

5. five And finally, we will delete the entire contents of the enemies table.

db:eq

db:eq(field reference, value)
Returns a database expression to test if the field in the sheet is equal to the value.

db:exp

db:exp(string)
Returns the string as-is to the database.
Use this function with caution, but it is very useful in some circumstances. One of the most
common of such is incrementing an existing field in a db:set() operation, as so:

db:set (mydb.enemies, db:exp("kills + 1"), db:eqg(mydb.enemies.name, "Ixokai"))

This will increment the value of the kills field for the row identified by the name Ixokai.

But there are other uses, as the underlining database layer provides many functions you can
call to do certain things. If you want to get a list of all your enemies who have a name longer
then 10 characters, you may do:

db:fetch (mydb.enemies, db:exp ("length (name) > 10"))

Again, take special care with this, as you are doing SQL syntax directly and the library can’t
help you get things right.

db:fetch

db:fetch(sheet reference, query, order by, descending)
Returns a table array containing a table for each matching row in the specified sheet. All
arguments but sheet are optional. If query is nil, the entire contents of the sheet will be
returned.
Query is a string which should be built by calling the various db: expression functions, such
as db:eq, db:AND, and such. You may pass a SQL. WHERE clause here if you wish, but doing
so is very dangerous. If you don’t know SQL well, its best to build the expression.
Query may also be a table array of such expressions, if so they will be AND’d together
implicitly.
The results that are returned are not in any guaranteed order, though they are usually the same
order as the records were inserted. If you want to rely on the order in any way, you must pass
a value to the order by field. This must be a table array listing the columns you want to sort
by. It can be { "columnl" }, or { "columnl", "column2" }

The results are returned in ascending (smallest to largest) order; to reverse this pass true into
the final field.

Example

db: fetch (mydb.enemies, nil, {"city", "name"})
db:fetch (mydb.enemies, db:eg(mydb.enemies.city, "San Francisco"))
db:fetch (mydb.kills,

{db:eg(mydb.kills.area, "Undervault"),

db:like (mydb.kills.name, "%Drow%")}

The first will fetch all of your enemies, sorted first by the city they reside in and then by their
name.

The second will fetch only the enemies which are in San Francisco.

The third will fetch all the things you’ve killed in Undervault which have Drow in their name.

db:gt

db:gt(field reference, value)
Returns a database expression to test if the field in the sheet is greater than to the value.

db:get database

db:get database(database name)
Returns your database name.

Example

local mydb = db:get database ("my database")

db:gte

db:gte(field reference, value)
Returns a database expression to test if the field in the sheet is greater than or equal to the
value.

db:in_

db:in_(field reference, table array)
Returns a database expression to test if the field in the sheet is one of the values in the table
array.
First, note the trailing underscore carefully! It is required.
The following example illustrates the use of in_:

local mydb = db:get database ("my database")
local areas = {"Undervault", "Hell", "Purgatory"}

db:fetch(mydb.kills, db:in (mydb.kills.area, areas))

This will obtain all of your kills which happened in the Undervault, Hell or Purgatory. Every
db:in_ expression can be written as a db:OR, but that quite often gets very complex.

db:is_nil

db:is_nil(field reference, value)
Returns a database expression to test if the field in the sheet is nil.

db:is not nil

db:is_not_ nil(field reference, value)
Returns a database expression to test if the field in the sheet is not nil.

db:like

db:like(field reference, pattern)
returns a database expression to test if the field in the sheet matches the specified pattern.
LIKE patterns are not case-sensitive, and allow two wild cards. The first is an underscore
which matches any single one character. The second is a percent symbol which matches zero
or more of any character.
LIKE with " " is therefore the same as the "." regular expression.
LIKE with "%" is therefore the same as ".*" regular expression.

db:It

db:lt(field reference, value)
Returns a database expression to test if the field in the sheet is less than the value.

db:lte

db:lte(field reference, value)
Returns a database expression to test if the field in the sheet is less than or equal to the value.

db:merge unique

db:merge unique(sheet reference, table array)
Merges the specified table array into the sheet, modifying any existing rows and adding any
that don’t exist.
This function is a convenience utility that allows you to quickly modify a sheet, changing
existing rows and add new ones as appropriate. It ONLY works on sheets which have a unique
index, and only when that unique index is only on a single field. For more complex situations
you’ll have to do the logic yourself.
The table array may contain tables that were either returned previously by db:fetch, or new
tables that you’ve constructed with the correct fields, or any mix of both. Each table must
have a value for the unique key that has been set on this sheet.

For example, consider this database

local mydb = db:create("peopledb",
{

friends = {
name = "",

race = '
level = 0,
Clty - n ",
_index = { "city" },
_unique = { "name" }

Here you have a database with one sheet, which contains your friends, their race, level, and
what city they live in. Let’s say you want to fetch everyone who lives in San Francisco, you
could do:

local results = db:fetch(mydb.friends, db:eg(mydb.friends.city, "San
Francisco"))

The tables in results are static, any changes to them are not saved back to the database. But
after a major radioactive cataclysm rendered everyone in San Francisco a mutant, you could
make changes to the tables as so:

for , friend in ipairs(results) do
friend.race = "Mutant"
end

If you are also now aware of a new arrival in San Francisco, you could add them to that
existing table array:

results[#results+l] = {name="Bobette", race="Mutant", city="San Francisco"}

And commit all of these changes back to the database at once with:

db:merge unique (mydb.friends, results)

The db:merge unique function will change the city values for all the people who we
previously fetched, but then add a new record as well.

db:not_between

db:not_between(field reference, lower bound, upper bound)
Returns a database expression to test if the field in the sheet is not a value between
lower_bound and upper_bound. This only really makes sense for numbers and Timestamps.

db:not _eq

db:not_eq(field reference, value)
Returns a database expression to test if the field in the sheet is NOT equal to the value.

db:not_in

db:not_in(field reference, table array)
Returns a database expression to test if the field in the sheet is not one of the values in the
table array.

See also: db:in_

db:not_like

db:not_like(field reference, pattern)
Returns a database expression to test if the field in the sheet does not match the specified
pattern.
LIKE patterns are not case-sensitive, and allow two wild cards. The first is an underscore
which matches any single one character. The second is a percent symbol which matches zero
or more of any character.
LIKE with " " is therefore the same as the "." regular expression.
LIKE with "%" is therefore the same as ".*" regular expression.

db:OR

db:OR(sub-expressionl, sub-expression?2)
Returns a compound database expression that combines both of the simple expressions passed
into it; these expressions should be generated with other db: functions such as db:eq, db:like,
db:1t and the like.

This compound expression will find any item that matches either the first or the second sub-
expression.

db:set

db:set(field reference, value, query)
The db:set function allows you to set a certain field to a certain value across an entire sheet.
Meaning, you can change all of the last read fields in the sheet to a certain value, or possibly
only the last read fields which are in a certain city. The query argument can be any value

which is appropriate for db:fetch, even nil which will change the value for the specified
column for EVERY row in the sheet.

For example, consider a situation in which you are tracking how many times you find a
certain type of egg during Easter. You start by setting up your database and adding an Eggs
sheet, and then adding a record for each type of egg.

Example

local mydb = db:create("egg database", {eggs = {color = "", last found =
db.Timestamp (false), found = 0}})
db:add (mydb.eggs,

{color = "Red"},
{color = "Blue"},
{color = "Green"},
{color = "Yellow"},
{color = "Black"}

Now, you have three columns. One is a string, one a timestamp (that ends up as nil in the
database), and one is a number.

You can then set up a trigger to capture from the mud the string, "You pick up a (.*) egg!",
and you end up arranging to store the value of that expression in a variable called "myegg".
To increment how many we found, we will do this:

myegg = "Red" -- We will pretend a trigger set this.

db:set (mydb.eggs.found, db:exp("found + 1"), db:eg(mydb.eggs.color,
myegq))

db:set (mydb.eggs.last found, db.Timestamp ("CURRENT TIMESTAMP"),
db:eg(mydb.eggs.color, myegqg))

This will go out and set two fields in the Red egg sheet; the first is the found field, which will
increment the value of that field (using the special db:exp function). The second will update
the last found field with the current time.

Once this contest is over, you may wish to reset this data but keep the database around. To do
that, you may use a more broad use of db:set as such:

db:set (mydb.eggs.found, 0)
db:set (mydb.eggs.last found, nil)

db:update

db:update(sheet reference, table)
This function updates a row in the specified sheet, but only accepts a row which has been
previously obtained by db:fetch. Its primary purpose is that if you do a db:fetch, then change
the value of a field or tow, you can save back that table.

Example

local mydb = db:get database ("my database™)

local bob = db:fetch(mydb.friends, db:eqg(mydb.friends.name, "Bob")) [1]
bob.notes = "He's a really awesome guy."

db:update (mydb.friends, bob)

This obtains a database reference, and queries the friends sheet for someone named Bob. As
this returns a table array containing only one item, it assigns that one item to the local variable

named bob. We then change the notes on Bob, and pass it into db:update() to save the changes
back.

Date & Time Functions

A collection of functions for handling Date & Time.

datetime:parse

datetime:parse(source, format, as_epoch)
Parses the specified source string, according to the format if given, to return a representation
of the date/time. If as_epoch is provided and true, the return value will be a Unix epoch — the
number of seconds since 1970. This is a useful format for exchanging date/times with other
systems. If as_epoch is false, then a Lua time table will be returned. Details of the time tables
are provided in the Lua Manual.

Supported Format Codes

%b = Abbreviated Month Name

%$B = Full Month Name

%d = Day of Month

%$H = Hour (24-hour format)

%I = Hour (l12-hour format, requires %p as well)
%p = AM or PM

gm = 2-digit month (01-12)

%M = 2-digit minutes (00-59)

S = 2-digit seconds (00-59)

$y = 2-digit year (00-99), will automatically prepend 20 so 10 becomes 2010 and
ot 1910.

Y = 4-digit year.

getTime

getTime(returntype, format)
returntype takes a boolean value (in Lua anything but false or nil will translate to true). If
false, the function will return a table in the following format:

{ '"min': #, 'year': #, 'month': #, 'day': #, 'sec': #, 'hour': #, 'msec': # }

If true, it will return the date and time as a string using a format passed to the format arg or the
default of "yyyy.MM.dd hh:mm:ss.zzz" if none is supplied:

2012.02.18 00:52:52.489

Format expressions:

h the hour without a leading zero (0 to 23 or 1 to 12 if AM/PM
display)

hh the hour with a leading zero (00 to 23 or 01 to 12 if AM/PM
display)

H the hour without a leading zero (0 to 23, even with AM/PM
display)

HH the hour with a leading zero (00 to 23, even with AM/PM display)
m the minute without a leading zero (0 to 59)

mm the minute with a leading zero (00 to 59)

s the second without a leading zero (0 to 59)

http://www.lua.org/pil/22.1.html

Ss the second with a leading zero (00 to 59)

z the milliseconds without leading zeroes (0 to 999)

ZZ7Z the milliseconds with leading zeroes (000 to 999)

AP or A use AM/PM display. AP will be replaced by either "AM" or "PM".
ap or a use am/pm display. ap will be replaced by either "am" or "pm".
d the day as number without a leading zero (1 to 31)

dd the day as number with a leading zero (01 to 31)

ddd the abbreviated localized day name (e.g. 'Mon' to 'Sun'). Uses
QDate: :shortDayName () .

dddd the long localized day name (e.g. 'Monday' to 'Qt::Sunday').
Uses QDate::longDayName () .

M the month as number without a leading zero (1-12)

MM the month as number with a leading zero (01-12)

MMM the abbreviated localized month name (e.g. 'Jan' to 'Dec'). Uses
QDate: :shortMonthName () .

MMMM the long localized month name (e.g. 'January' to 'December').
Uses QDate::longMonthName () .

vy the year as two digit number (00-99)

VYYY the year as four digit number

All other input characters will be ignored. Any sequence of characters that are enclosed in single
quotes will be treated as text and not be used as an expression. Two consecutive single quotes (")
are replaced by a single single quote in the output.

Example

-—- Get time as a table
@getTime ()

-- Get time with default string
@getTime (true)

-—- Get time without date and milliseconds
@getTime (true, "hh:mm:ss")

getTimestamp

getTimestamp(optional console name, lineNumber)
Returns the timestamp string as it’s seen when you enable the timestamps view (blue i button
bottom right).

W Note: Available since 1.1.0-prel

Example

--Echo the timestamp of the current line in a trigger:
echo (getTimestamp (getLineCount ()))

Display Functions

A collection of functions for displaying or formatting information on the screen.

display

display(value)
This function will do it's best to show whatever you ask it (a number, string, table, function).

This function can be useful for seeing what values does a table have, for example. Note that
this doesn't handle recursive references and will loop infinitely at the moment (Mudlet 2.0-
test4). If a value is a string, it'll be in single quotes, and if it's a number, it won't be quoted.

Example

-- ask it to display a table
display({a = "somevalue", 1,2,3})
-- or some other target
display(target)

showColors

showColors(columns)
shows the named colors currently available in Mudlet's color table. These colors are stored in
color_table, in table form. The format is color table.colorName = {r,g,b}

See Also: bg(), f2(), cecho()

Parameters

e columns:

Number of columns to print the color table in. Passed as an integer number.

Example

showColors (4)

The output for this is:

a bl
light_slate_blue
a_red
DarkOliveGreen
a_darkblue

red

DodgerBlue

medium_
Mediums
1

ight_steel blue
Greentellow

medium_turquoise
honeydew
LightElue
a_darkgreen
LightSkyBlLue
orange_re

MidnightELue
LightSlateGrey
1ight_blue
antique white

wrapLine

SlateBlLue

LemoniChitton

tomato
awh_Qreen
vellow areen
wSlateGray
enta

DarkOrchis

PaleGoldenrod
dim grew
a !a ! E!

LightSlateGray

dark olLiw il
saddle br

violet FE!

il e
bElue

medium blue

han
firebrick
CornflowerBlue

ight_cyan

burl ywood

medium wiolet re:
peru 0

hawalo_white
LightGoldenrodyellow

Limer

F_pink
a darkgrey

midnight blue
light slate grew

FPaleTurquolse

wrapLine(windowName, lineNumber)
Wrap line lineNumber of mini console (window) windowName. This function will interpret \n
characters, apply word wrap and display the new lines on the screen. This function may be
necessary if you use deleteLine() and thus erase the entire current line in the buffer, but you
want to do some further echo() calls after calling deleteLine(). You will then need to re-wrap
the last line of the buffer to actually see what you have echoed and get you \n interpreted as
newline characters properly. Using this function is no good programming practice and should
be avoided. There are better ways of handling situations where you would call deleteLine()

and echo afterwards.

floral_white

LightSteelBlue

cornsilk
medium_spring_green

SlateGrey

LavenderBlLus

pale_turguaoise
Pal eiGreen

LeBrown
PapayaWhip
OldLace
tforest green

MediumSpringGreen
B_arey

1ight goldenrod
DamG

DimGray
MediumOrchid

Mediumviol et Rer
chartreuse
ight_pink
papaya_whip

HEdiﬁﬁPurplE
black

ellowGreen
maraoan

dark green

cadet blue

SteelB

L Turqu

http://wiki.mudlet.org/w/File:ShowColors.png

Example

--This will effectively have the same result as a call to deletelLine() but the
buffer line will not be entirely removed.

--Consequently, further calls to echo() etc. sort of functions are possible
without using wrapLine () unnecessarily.

selectString(line, 1) ;
replace("");

File System Functions

A collection of functions for interacting with the file system.

io.exists

10.exists()
Checks to see if a given file or folder exists.
If it exists, it’ll return the Lua true boolean value, otherwise false.
Note: Behavior varies based on the user's operating system. Windows requires a specific file,
while Linux will accept directories.
See Ifs.attributes() for a cross-platform solution.

Example

-- This example works on Linux only
if io.exists ("/home/vadi/Desktop") then
echo ("This folder exists!")
else
echo ("This folder doesn't exist.")
end

—-— This example will work on both Windows and Linux.
if io.exists("/home/vadi/Desktop/file.tx"™) then
echo ("This file exists!")

else

echo ("This file doesn't exist.")
end
Ifs.attributes

Ifs.attributes(path)
Returns a table with detailed information regarding a file or directory, or nil if path is invalid.

Example

fileInfo = 1lfs.attributes("/path/to/file or directory")
if fileInfo then
if fileInfo.mode == "directory" then
echo ("Path points to a directory.")
elseif fileInfo.mode == "file" then
echo ("Path points to a file.")
else
echo ("Path points to: "..fileInfo.mode)
end
display(fileInfo) -- to see the detailed information

else
echo ("The path is invalid (file/directory doesn't exist)")
end

Mapper Functions

These are functions that are to be used with the Mudlet Mapper. The mapper is designed to be
MUD-generic - it only provides the display and pathway calculations, to be used in Lua scripts that
are tailored to the MUD you're playing. For a collection of pre-made scripts and general mapper
talk, visit the mapper section of the forums.

To register a script as a mapping one with Mudlet (so Mudlet knows the profile has one and won't
bother the user when they open the map), please do this in your script:

mudlet = mudlet or {}; mudlet.mapper script = true

addAreaName
arealD = addAreaName(areaName)
Adds a new area name and returns the new area ID for the new name. If the name already

exists, -1 is returned.
See also: deleteArea(), addRoom()

Example

local newID = addAreaName ("My house")

if newID == -1 then echo("That area name is already taken :(\n")
else echo("Created new area with the ID of "..newid..".\n") end
addMapEvent

addMapEvent(uniquename, event name, parent, display name, arguments)

Adds a new entry to an existing mapper right-click entry. You can add one with
addMapMenu. If there is no display name, it will default to the unique name (which otherwise
isn't shown and is just used to differentiate this entry from others). event name is the Mudlet
event that will be called when this is clicked on, and arguments will be passed to the handler
function.

See also: addMapMenu(), removeMapEvent(), getMapEvents()

Example

addMapEvent ("room a", "onFavorite") -- will make a label "room a" on the map
menu's right click that calls onFavorite

addMapEvent ("room b", "onFavorite", "Favorites", "Special Room!", 12345, "argl",
llargzll, llargnll)

The last line will make a label "Special Room!" under the "Favorites" menu that on clicking will
send all the arguments.

http://forums.mudlet.org/viewforum.php?f=13

addMapMenu
addMapEvent(uniquename, parent, display name)
Adds a new submenu to the right-click menu that opens when you right-click on the mapper.

You can then add more submenus to it, or add entries with addMapEvent().
See also: addMapEvent(), removeMapEvent(), getMapEvents()

Example
addMapMenu ("Favorites") -- will create a menu, favorites
addMapMenu ("Favoritesl1234343", "Favorites", "Favorites")

The last line will create a submenu with the unique id Favorites123.. under Favorites with the
display name of Favorites.

addRoom
addRoom(roomID)

Creates a new room with the given ID, returns true if the room was successfully created.

W Note: If you're not using incremental room IDs but room IDs stitched together from other
factors or in-game hashes for room IDs - and your room IDs are starting off at 250+million
numbers, you need to look into incrementally creating Mudlets room IDs with createRoomID() and
associating your room IDs with Mudlets via setRoomIDbyHash() and getRoomIDbyHash(). The
reason being is that Mudlet's A* pathfinding implementation from boost cannot deal with extremely
large room IDs because the resulting matrices it creates for pathfinding are enormously huge.

See also: createRoomID()
Example

local newroomid = createRoomID ()
addRoom (newroomid)

addSpecialExit
addSpecialExit(roomIDFrom, roomIDTo, command)
Creates a one-way from one room to another, that will use the given command for going

through them.
See also: [#clearSpecialExits|clearSpecial Exits()]]

Example

-- sample alias pattern: “spe (\d+) (.*2)$

-—- mmp.currentroom is your current room ID in this example

addSpecialExit (mmp.currentroom, tonumber (matches[2]), matches[3])

echo ("\n SPECIAL EXIT ADDED TO ROOMID:"..matches[2]..", Command:"..matches[3])

centerview (mmp.currentroom)

centerview

centerview (roomID)

Centers the map view onto the given room ID. The map must be open to see this take effect.
This function can also be used to see the map of an area if you know the number of a room
there and the area and room are mapped.

clearRoomUserData

clearRoomUserData(roomlID)

Clears all user data from a given room.

See also: setRoomUserData()

Example

clearRoomUserData (341)

clearSpecialExits

clearSpecial Exits(roomID)

Removes all special exits from a room.

See also: addSpecial Exit()

Example

clearSpecialExits (1337)

if #getSpecialExits(1337) == 0 then -- clearSpecialExits will neve fail on a

valid room ID, this is an example

echo ("All special exits successfully cleared from 1337.\n")

end

createMapLabel

labelID = createMapLabel(arealD, text, posx, posy, fgRed, fgGreen, fgBlue, bgRed, bgGreen,

bgBlue)

Creates a visual label on the map for all z-levels at given coordinates, with the given
background and foreground colors. It returns a label ID that you can use later for deleting it.

The coordinates 0,0 are in the middle of the map, and are in sync with the room coordinates -
so using the x,y values of getRoomCoordinates() will place the label near that room.

See also: deleteMapLabel

Example

local labelid = createMapLabel (50,

"my map label", 0, 0, 255,0,0,23,0,0)

createMapper
createMapper(X, y, width, height)

Creates a miniconsole window for mapper to render in, the with the given dimensions. You
can only create one at a time at the moment.

Example

createMapper (0,0,300,300) -- creates a 300x300 mapper top-right of Mudlet
setBorderLeft (305) -- adds a border so text doesn't underlap the mapper display
createRoomID

usableld = createRoomID()

Returns the lowest possible room ID you can use for creating a new room. If there are gaps in
room IDs your map uses it, this function will go through the gaps first before creating higher
IDs.

See also: addRoom()

deleteArea
deleteArea(arealD)

Deletes the given area, permanently. This will also delete all rooms in it!
See also: addAreaName()

Example

deleteArea (23)

deleteMapLabel
deleteMapLabel(arealD, labellD)

Deletes a map label from a specfic area.
See also: createMapLabel()

Example

deleteMapLabel (50, 1)

deleteRoom

deleteRoom(roomID)
Deletes an individual room, and unlinks all exits leading to and from it.

Example

deleteRoom (335)

getAreaRooms

getAreaRooms(area id)

Returns an indexed table with all rooms IDs for a given area ID (room IDs are values), or ni/
if no such area exists.

u) Note: On Mudlet versions prior to the 2.0 final release, this function would raise an error.

Example

-- using the sample findArealID() function defined in the getAreaTable() example,
-— we'll define a function that echo's us a nice list of all rooms in an area
with their ID
function echoRoomList (areaname)
local id, msg = findArealD (areaname)
if id then
local roomlist, endresult = getAreaRooms (id), {}

—-- obtain a room list for each of the room IDs we got
for , id in ipairs(roomlist) do

endresult[id] = getRoomName (id)
end

-- now display something half-decent looking
cecho (string.format (
"List of all rooms in %s (%d):\n", msg, table.size(endresult)))

for roomid, roomname in pairs(endresult) do
cecho (string.format (
"$6s: %$s\n", roomid, roomname))

end
elseif not id and msg then
echo ("ID not found; " .. msg)
else
echo ("No areas matched the query.")
end
end
getAreaTable
getAreaTable()
Returns a key(area name)-value(area id) table with all known areas and their IDs. There is an
area with the name of and an ID of 0 included in it, you should ignore that.
Example

-- example function that returns the area ID for a given area

function findArealD (areaname)
local list = getAreaTable()

—-— iterate over the list of areas, matching them with substring match.
-- if we get match a single area, then return it's ID, otherwise return
-—- 'false' and a message that there are than one are matches

local returnid, fullareaname
for area, id in pairs(list) do
if area:find(areaname, 1, true) then
if returnid then return false, "more than one area matches" end
returnid = id; fullareaname = area
end
end

return returnid, fullareaname
end

-— sample use:
local id, msg = findAreaID("blahblah")

if id then

echo ("Found a matching ID: " .. id")
elseif not id and msg then

echo ("ID not found; " .. msg)
else

echo ("No areas matched the query.")
end

getCustomEnvColorTable
envcolors = getCustomEnvColorTable()

Returns a table with customized environments, where the key is the environment ID and the
value is a indexed table of rgb values.

Example

{
envidl = {r,qg,b},
envid?2 {r,g,b}

getMapLabel
labelinfo = getMapLabels(arealD, labellD)
Returns a key-value table describing that particular label in an area. Keys it contains are the X,

Y, Z coordinates, Height and Width, and the Text it contains. If the label is an image label, then
Text will be set to the no text string.

Example

lua getMapLabels (1658987)

table {
1: 'no text'
0: 'test'

}

lua getMapLlabel (1658987, 0)

table {
'Y': -2
'X': -8
'z': 11

'Height': 3.9669418334961
'Text': 'test'

'Width': 8.6776866912842
}

lua getMapLabel (1658987, 1)
table {
'y': 8
'X': =15
'z': 11
'Height': 7.2520666122437
'Text': 'no text'
'Width': 11.21900844574

getMapLabels
arealabels = getMapLabels(arealD)

Returns an indexed table (that starts indexing from 0) of all of the labels in the area, plus their
label text. You can use the label id to deleteMapLabel() it.

Example

display (getMapLabels (43))
table {

0: "!

1: 'Waterways'

}

deleteMaplabel (43, O0)
display (getMapLabels (43))
table {

1: '"Waterways'

}

getModulePriority

priority = getModulePriority(module name)

Returns the priority of a module as an integer. This determines the order modules will be
loaded in - default is 0. Useful if you have a module that depends on another module being
loaded first, for example.

See also: setModulePriority()

Example

getModulePriority ("mudlet-mapper")

getPath
getPath(roomID from, roomlID to)

Returns a boolean true/false if a path between two room IDs is possible. If it is, the global
speedWalkPath table is set to all of the directions that have to be taken to get there, and the

global speedWalkDir table is set to all of the roomIDs you'll encounter on the way.

Example

-- check if we can go to a room - if yes, go to it
if getPath(34,155) then
gotoRoom (155)

else

echo ("\nCan't go there!™")
end
getRoomArea

arealD = getRoomArea(roomID)

Returns the area ID of a given room ID. To get the area name, you can check the area ID
against the data given by getAreaTable() function, or use the getRoomAreaName() function.

W Note: If the room ID does not exist, this function will raise an error.

Example

display ("Area ID of room #100 is: "..getRoomArea (100))

display ("Area name for room #100 is: "..getRoomAreaName (getRoomArea (100)))
getRoomAreaName

areaname = getRoomAreaName(arealD)

Returns the area name for a given area id.

Example
echo (string.format ("room id #455 is in %s.", getRoomAreaName (getRoomArea (455))))
getRoomCoordinates

X,y,z = getRoomCoordinates(room ID)

Returns the room coordinates of the given room ID.

Example

local x,y,z = getRoomCoordinates (roomID)
echo ("Room Coordinates for "..roomID..":")
echo ("\n X:"..X)

echo ("\n Y:"..y)

echo ("\n Z:"..z)

getRoomEnv

envID = getRoomEnv(roomID)

Returns the environment ID of a room. The mapper does not store environment names, so
you'd need to keep track of which ID is what name yourself.

Example

funtion checkID(id)
echo (strinf.format ("The env ID of room #%d is %d.\n", id, getRoomEnv (id)))
end

getRoomEXxits

getRoomEXxits (roomID)
Returns the currently known non-special exits for a room in an key-index form: exit =
exitroomid, ie:

Example
table {
'northwest': 80
'east': 78
}
getRoomIDbyHash

roomID = getRoomIDbyHash(hash)

Returns a room ID that is associated with a given hash in the mapper. This is primarily for
MUDs that make use of hashes instead of room IDs (like Avalon.de MUD). -/ is returned if
no room ID matches the hash.

Example

-- example taken from http://forums.mudlet.org/viewtopic.php?f=13&t=2177
_1dl = getRoomIDbyHash("5dfe55b0c8d769%9e865fd85ba63127fbc");
if idl == -1 then
_1dl = createRoomID ()
setRoomIDbyHash(idl, "5dfe55b0c8d769e865fd85ba63127fbc")
addRoom(_id)
setRoomCoordinates(_idl, 0, 0, -1)
end

getRoomName

roomName = getRoomName(roomID)
Returns the room name for a given room id.

Example

echo (string.format ("The name of the room id #455 is %s.", getRoomname (455))

http://avalon.mud.de/index.php?enter=1

getRooms

rooms = getRooms()
Returns the list of all rooms in the map in an area in roomid - room name format.

Example

-- simple, raw viewer for rooms in an area
display(getRooms ())

getRoomsByPosition
getRoomsByPosition(arealD, x,y,z)
Returns an indexed table of all rooms at the given coordinates in the given area, or an empty

one if there are none. This function can be useful for checking if a room exists at certain
coordinates, or whenever you have rooms overlapping.

Example

-- sample script to determine a room nearby, given a relative direction from the
current room
local otherroom

if matches[2] == "" then
local w = matches[3]
local ox, oy, 0z, X,Y,z = getRoomCoordinates (mmp.currentroom)
local has = table.contains
if has ({"west", "left", "w", "1"}, w) then
X = (x or ox) - 1; y = (y or oy); z = (z or oz)
elseif has({"east", "right", "e", "r"}, w) then
X = (x or ox) + 1; y = (y or oy); z = (z or oz)
elseif has ({"north", "top", "n", "t"}, w) then
X = (x or ox); y = (y or oy) + 1; z = (z or oz)
elseif has ({"south", "bottom", "s", "b"}, w) then
X = (x or ox); y = (y or oy) - 1; z = (z or oz)
elseif has ({"northwest", "topleft", "nw", "tl"}, w) then
X = (x or ox) - 1; y = (y or oy) + 1; z = (z or oz)
elseif has({"northeast", "topright", "ne", "tr"}, w) then
X = (x or ox) + 1; y = (y or oy) + 1; z = (z or oz)
elseif has ({"southeast", "bottomright", "se", "br"}, w) then
X = (x or ox) + 1; y = (y or oy) - 1; z = (z or oz)
elseif has ({"southwest", "bottomleft", "sw", "bl"}, w) then
X = (x or ox) - 1; y = (y or oy) - 1;, z = (z or oz)
elseif has ({"up", "u"}, w) then
X = (x or ox); y = (y or oy); z = (z or oz) + 1
elseif has ({"down", "d"}, w) then
X = (x or ox); y = (y or oy); z = (z or oz) - 1
end

local carea = getRoomArea (mmp.currentroom)
if not carea then mmp.echo ("Don't know what area are we in.") return end

otherroom = select (2, next (getRoomsByPosition (carea,x,v,z)))

if not otherroom then
mmp.echo ("There isn't a room to the "..w.." that I see - try with an exact
room id.") return
else

mmp.echo ("The room "..w.." of us has an ID of "..otherroom)
end

getRoomUserData
data = getRoomUserData(roomlID, key (as a string))

Returns the user data stored at a given room with a given key, or
setRoomUserData() function for setting the user data.

Example

display (getRoomUserData (341, "visitcount"))

getRoomWeight
room weight = getRoomWeight(roomID)

Returns the weight of a room. By default, all new rooms have a weight of 1.
See also: setRoomWeight()

Example

display ("Original weight of room 541: "..getRoomWeight (541)
setRoomWeight (541, 3)

display ("New weight of room 541: "..getRoomWeight (541)
getSpecialExits

exits = getSpecial Exits(roomID)

if none is stored. Use

Returns a roomid - command table of all special exits in the room. If there are no special exits

in the room, the table returned will be empty.

Example

getSpecialExits (1337)

-— results in:
[
table {
12106: 'faiglom nexus'
}
11

getSpecialExitsSwap
exits = getSpecial ExitsSwap(roomID)

Very similar to getSpecialExits() function, but returns the rooms in the command - roomid

style.

gotoRoom

gotoRoom (roomID)
Speedwalks you to the given room from your current room if it is able and knows the way.
You must turn the map on for this to work, else it will return "(mapper): Don't know how to

get there from here :(".

hasExitLock

status = hasExitLock(roomlID, direction)

Returns true or false depending on whenever a given exit leading out from a room is locked.
direction right now is a number that corresponds to the direction:

exitmap =
n=1,
north =
ne = 2,
northeas
nw = 3,
northwes
e = 4,
east = 4
w = 5,
west = 5
s = 6,
south =
se =17,
southeas
sw = 8,
southwes

Example

—-— check if the east exit of room

{
1,
t

t

14

6,
t

t

display (hasExitLock (1201, 4))

See also: lockExit()

hasSpecialExitLock

status = hasSpecial ExitLock(from roomID, to roomID, command)

1201 is locked

Returns true or false depending on whenever a given exit leading out from a room is locked.
command is the action to take to get through the gate.

—-— lock a special exit from 17463 to 7814 that uses the
lockSpecialExit (17463,

-—- see if it is locked:

7814, 'enter feather', true)

it will say

'true',

it is

'enter feather'

command

display(hasSpecialExitLock (17463, 7814, 'enter feather'))

highlightRoom
highlightRoom(id, rl1,g1,b1,r2,g2,b2, radius, alphal, alpha2)

Highlights a room with the given color, which will override it's environment color. If you use
two different colors, then there'll be a shading from the center going outwards that changes
into the other color. highlightRadius is the radius for the highlight circle - if you don't want
rooms beside each other to over lap, use / as the radius. alphaColorl and alphaColor2 are
transparency values from 0 (completely transparent) to 255 (not transparent at all).

See also: unHighlightRoom()

;tfl Note: Available since Mudlet 2.0 final release

-— color room #351 red to blue

local r,g,b = unpack(color table.red)

local br,bg,bb = unpack(color table.blue)
highlightRoom (351, r,qg,b,br,bg,bb, 1, 255, 255)

loadMap
boolean = loadMap(file location)

Loads the map file from a given location. The map file must be in Mudlet's format (not XML
or any other) - saved with saveMap().

Returns a boolean for whenever the loading succeeded. Note that the mapper must be open, or
this will fail.

See also: saveMap()

loadMap (" /home/user/Desktop/Mudlet Map.dat")

lockExit
lockExit(roomlID, direction, lock = true/false)
Locks a given exit from a room (which means that unless all exits in the incoming room are

locked, it'll still be accessible). Direction at the moment is only set as a number, and here's a
listing of them:

exitmap
n=1,
north = 1,
ne = 2,
northeast
nw = 3,
northwest = 3,
e = 4,
east = 4,
w = 5,
west = 5,

{

Il
N
~

s = 6,
south = 6,
se =7,
southeast
sw = 8,
southwest = 8,

Il
~J
~

Example

—-— lock the east exit of room 1201 so we never path through it
lockExit (1201, 4, true)

See also: hasExitLock()

lockRoom
lockRoom (roomlID, lock = true/false)

Locks a given room id from future speed walks (thus the mapper will never path through that
room).

See also: roomlLocked()

Example

lockRoom(1l, true) -- locks a room if from being walked through when
speedwalking.

lockRoom (1, false) -- unlocks the room, adding it back to possible rooms that

can be walked through.

lockSpecialExit
lockSpecialExit (from roomID, to roomlID, special exit command, lock = true/false)
Locks a given special exit, leading from one specific room to another that uses a certain

command from future speed walks (thus the mapper will never path through that special exit).
See also: hasSpecial ExitLock(), lockExit(), lockRoom()

Example

lockSpecialExit (1,2, 'enter gate', true) -- locks the special exit that does
'enter gate' to get from room 1 to room 2

lockSpecialExit (1,2, '"enter gate', false) -- unlocks the said exit
removeMapEvent

removeMapEvent (event name)

Removes the given menu entry from a mappers right-click menu. You can add custom ones
with addMapEvent().
See also: addMapEvent(), addMapMenu(), getMapEvents()

Example

addMapEvent ("room a", "onFavorite") -- add one to the general menu
removeMapEvent ("room a") -- removes the said menu

roomEXxists

roomEXxists(roomID)

Returns a boolean true/false depending if the room with that ID exists (is created) or not.

roomLocked
locked = roomLocked(roomID)

Returns true or false whenever a given room is locked.

See also: lockRoom()

Example
echo (string.format ("Is room #4545 locked? %s.", roomLocked(4545) and "Yep" or

"Nope"))

saveMap

saveMap(location)

Saves the map to a given location, and returns true on success. The location folder needs to be
already created for save to work.

See also: loadMap()

Example
local savedok = saveMap (getMudletHomeDir ().."/my fancy map.dat")
if not savedok then
echo ("Couldn't save :(\n")
else
echo ("Saved fine!\n")
end
searchRoom

searchRoom (room name)

Searches for rooms that match (by case-insensitive, substring match) the given room name. It
returns a key-value table in form of roomid = roomname, like so:

Example

display (searchRoom ("master"))

-—[[would result in:

table {
17463: '"in the branches of the Master Ravenwood'
3652: 'master bedroom'
10361: '"Hall of Cultural Masterpieces'
6324: 'Exhibit of the Techniques of the Master Artisans'
5340: 'office of the Guildmaster'
(...)

2004: 'office of the guildmaster'

14457: 'the Master Gear'

1337: 'before the Master Ravenwood Tree'

If no rooms are found, then an empty table is returned.

setAreaName

setAreaName(arealD, newName)
Renames an existing area to the new name.

Example

setAreaName (2, "My city")

setCustomEnvColor

setCustomEnvColor(environmentID, r,g,b,a)

Creates, or overrides an already created custom color definition for a given environment ID.
Note that this will not work on the default environment colors - those are adjustable by the
user in the preferences. You can however create your own environment and use a custom
color definition for it.

W Note: Numbers 1-16 and 257-272 are reserved by Mudlet. 257-272 are the default colors the
user can adjust in mapper settings, so feel free to use them if you'd like - but don't overwrite them
with this function.

Example

setRoomEnv (571, 200) -- change the room's environment ID to something arbitrary,
like 200

local r,g,b = unpack(color table.blue)

setCustomEnvColor (200, r,g,b, 255) -- set the color of environmentID 200 to blue
setExit

setExit(from roomID, to roomID, direction)

Creates a one-way exit from one room to another using a standard direction - which can be

either one of n, ne, nw, e, w, s, se, sw, u, d, in, out, or a number which represents a direction.
Returns false if the exit creation didn't work.

Example

-- alias pattern: "exit (\d+) (\w+)$

if setExit (mmp.currentroom, tonumber (matches[2]),matches[3]) then
echo ("\nExit set to room:"..matches[2]..",
Direction:"..string.upper (matches([3]))

centerview (mmp.currentroom)

else

mmp .echo ("Failed to set the exit.") end

This function can also delete exits from a room if you use it like so: setExit(from roomlID, -1,
direction)

Which will delete an outgoing exit in the specified direction from a room.

-— locate the room on the other end, so we can unlink it from there as well if

necessary

local otherroom

if getRoomExits (getRoomExits (mmp.currentroom) [dir]) [mmp.ranytolong(dir)] then
otherroom = getRoomExits (mmp.currentroom) [dir]

end

if setExit (mmp.currentroom, -1, dir) then
if otherroom then

if setExit (otherroom, -1, mmp.ranytolong(dir)) then
mmp.echo (string.format ("Deleted the %s exit from %s (%d).",
dir, getRoomName (mmp.currentroom), mmp.currentroom))
else mmp.echo("Couldn't delete the incoming exit.") end
else
mmp.echo (string.format ("Deleted the one-way %s exit from %s (%d).",
dir, getRoomName (mmp.currentroom), mmp.currentroom))
end
else
mmp .echo ("Couldn't delete the outgoing exit.")
end

You can use these numbers for setting the directions as well:

exitmap = {
n=1,
north = 1,
ne = 2,
northeast = 2,
nw = 3,
northwest = 3,
e = 4,
east = 4,
w = 5,
west = 5,
s = 6,
south = 6,
se =17,
southeast = 7,
sw = 8,
southwest = 8,
u =9,

up = 9,

d = 10,

down = 10,
["in"] = 11,
out = 12
}
setGridMode

setGridMode(area, true/false)

Enables grid/wilderness view mode for an area - this will cause the rooms to lose their visible
exit connections, like you'd see on compressed ASCII maps, both in 2D and 3D view mode.

Example

setGridMode (55, true) -- set area with ID 55 to be in grid mode

setModulePriority

setModulePriority(module name, priority #)

Sets the module priority on a given module as a number - the module priority determines the
order modules are loaded in, which can be helpful if you have ones dependent on each other.
This can also be set from the module manager window.

See also: getModulePriority()

setModulePriority ("mudlet-mapper", 1)

setRoomArea

setRoomArea(roomID, newArealD)

Assigns the given room to a new area. This will have the room be visually moved into the
area as well.

setRoomChar

setRoomChar(roomlID, character)

Designed for an area in grid mode, this will set a single character to be on a room. You can
use " " to clear it.

Example

setRoomChar (431, "#")

setRoomChar (123. "$")

setRoomCoordinates

setRoomCoordinates(roomlD, x, y, z)

Sets the given room ID to be at the following coordinates visually on the map, where z is the
up/down level.

d) Note: 0,0,0 is the center of the map.

Example
-- alias pattern: “set rc (-?\d+) (-?\d+) (-?\d+)$
local x,y,z = getRoomCoordinates (previousRoomID)

local dir = matches[2]

if dir == "n" then
y = y+l

elseif dir == "ne" then
y = y+1
X = x+1

elseif dir == "e" then
X = x+1

elseif dir == "se" then
y = y-1
X = x+1

elseif dir == "s" then
y = y-1

elseif dir == "sw" then
y = y-1
x = x-1

elseif dir == "w" then
x = x-1

elseif dir == "nw" then
y = ytl
x = x-1

elseif dir == "u" or dir == "up" then
z = z+1

elseif dir == "down" then
z = z-1

end

setRoomCoordinates (roomID, xX,y, z)
centerview (roomID)

You can make them relative as well:

-- alias pattern: "“src (\w+)$

local x,y,z = getRoomCoordinates (previousRoomID)
local dir = matches[2]

if dir == "n" then
y = y+1

elseif dir == "ne" then
y = ytl
x = x+1

elseif dir == "e" then
X = x+1

elseif dir == "se" then
y = y-1
X = x+1

elseif dir == "s" then
y = y-1

elseif dir == "sw" then
y = y-1
x = x-1

elseif dir == "w" then

x = x-1

elseif dir == "nw" then
y = ytl
x = x-1
elseif dir == "u" or dir == "up" then
z = z+1
elseif dir == "down" then
z = z-1
end

setRoomCoordinates (roomID, x,vy, z)
centerview (roomID)

setRoomEnv

setRoomEnv(roomID, newEnvID)

Sets the given room to a new environment ID. You don't have to use any functions to create it
- can just set it right away.

Example
setRoomEnv (551, 34) -- set room with the ID of 551 to the environment ID 34
setRoomIDbyHash

setRoomIDbyHash(roomlID, hash)

Sets the hash to be associated with the given roomID. See also getRoomIDbyHash().

setRoomName

setRoomName(roomID, newName)

Renames an existing room to a new name.

Example

setRoomName (534, "That evil room I shouldn't visit again.")
lockRoom (534, true) -- and lock it just to be safe
setRoomUserData

setRoomUserData(roomlID, key (as a string), value (as a string))

Stores information about a room under a given key. Similar to Lua's key-value tables, except
only strings may be used here. One advantage of using userdata is that it's stored within the
map file itself - so sharing the map with someone else will pass on the user data. You can have
as many keys as you'd like.

Returns true if successfully set.
See also: clearRoomUserData()

Example

-—- can use it to store room descriptions...
setRoomUserData (341, "description", "This is a plain-looking room.")

-—- or whenever it's outdoors or not...
setRoomUserData (341, "ourdoors", "true")

-- how how many times we visited that room

local visited = getRoomUserData (341, "visitcount")
visited = (tonumber (visited) or 0) + 1
setRoomUserData (341, "visitcount", tostring(visited))

-— can even store tables in it, using the built-in yajl.to string function

setRoomUserData (341, "some table", yajl.to string({name = "bub", age = 23}))
display ("The denizens name is: "..yajl.to value (getRoomUserData (341, "some
table")) .name)

setRoomWeight

setRoomWeight(roomID, weight)
Sets a weight to the given roomID. By default, all rooms have a weight of 0 - the higher the
weight is, the more likely the room is to be avoided for pathfinding. For example, if travelling
across water rooms takes more time than land ones - then you'd want to assign a weight to all
water rooms, so they'd be avoided if there are possible land pathways.

To completely avoid a room, make use of lockRoom().

See also: getRoomWeight()

Example

setRoomWeight (1532, 3) -- avoid using this room if possible, but don't
completely ignore it

speedwalk
speedwalk(dirString, backwards, delay)

A speedwalking function will work on cardinal+ordinal directions (n, ne, e, etc.) as well as u
(for up), d (for down), in and out. It can be called to execute all directions directly after each
other, without delay, or with a custom delay, depending on how fast your mud allows you to
walk. It can also be called with a switch to make the function reverse the whole path and lead
you backwards.

Call the function by doing: speedwalk ("YourDirectionsString",
true/false, delaytime)

The delaytime parameter will set a delay between each move (set it to 0.5 if you want the
script to move every half second, for instance). It is optional: If you don't indicate it, the script
will send all direction commands right after each other. (If you want to indicate a delay, you
-have- explicitly indicate true or false for the reverse flag.)

The "YourDirectionsString" contains your list of directions and steps (e.g.: "2n, 3w, u, Sne").
Numbers indicate the number of steps you want it to walk in the direction specified after it.
The directions must be separated by anything other than a letter that can appear in a direction
itself. (I.e. you can separate with a comma, spaces, the letter x, etc. and any such
combinations, but you cannot separate by the letter "e", or write two directions right next to
each other with nothing in-between, such as "wn". If you write a number before every
direction, you don't need any further separator. E.g. it's perfectly acceptable to write
"3wlne2e".) The function is not case-sensitive.

If your Mud only has cardinal directions (n,e,s,w and possibly u,d) and you wish to be able to
write directions right next to each other like "enu2s3wdu", you'll have to change the pattern
slightly. (See the link at the beginning of my post for something like that.)

Likewise, if your Mud has any other directions than n, ne, e, se, s, sw, w, nw, u, d, in, out, the
function must be adapted to that.

Example

speedwalk ("16dlselu")
-- Will walk 16 times down, once southeast, once up. All in immediate
succession.

speedwalk ("2ne, 3e,2n,e")
-— Will walk twice northeast, thrice east, twice north, once east. All in
immediate succession.

speedwalk ("IN N 3W 20 W", false, 0.5)
-- Will walk in, north, thrice west, twice up, west, with half a second delay
between every move.

speedwalk ("5sw - 3s - 2n - w", true)
-— Will walk backwards: east, twice south, thrice, north, five times northeast.
All in immediate succession.

speedwalk ("3w, 2ne, w, u", true, 1.25)
-— Will walk backwards: down, east, twice southwest, thrice east, with 1.25
seconds delay between every move.

W Note: The probably most logical usage of this would be to put it in an alias. For example, have
the pattern 7/(.+)§ execute: speedwalk (matches[2], false, 0.7) Andhave V/(+)$
execute: speedwalk (matches[2], true, 0.7)

Or make aliases like: “banktohome$ to execute

speedwalk ("2ne,e,ne, e, 3u,in", true, 0.5)

unHighlightRoom
unHighlightRoom(roomID)

Unhighlights a room if it was previously highlighted and restores the rooms original
environment color.

See also: highlightRoom()

;tfl Note: Available since Mudlet 2.0 final release

Example

unHighlightRoom (4534)

Miscellaneous Functions

feedTriggers

feedTriggers(text)
This function will have Mudlet parse the given text as if it came from the MUD - one great
application is trigger testing. You can use \n to represent a new line - you also want to use it
before and after the text you’re testing, like so:

feedTriggers ("\nYou sit yourself down.\n")

The function also accept ANSI color codes that are used in MUDs. A sample table can be
found here.
Example

feedTriggers ("\nThis is \27[1;32mgreen\27[0;37m, \27[1;31lmred\27[0;37m, \
27 [46mcyan background\27[0;37m,"
"\27[32;47mwhite background and green foreground\27[0;37m.\n")

expandAlias

expandAlias(command,true/false)
Runs the command as if it was from the command line - so aliases are checked and if none
match, it's sent to the the game. If the second argument is false, it will hide the command from
being echoed back in your buffer. Defaults to true.

Example

expandAlias ("t rat")

--— don't echo the command
expandAlias ("t rat", false)

W Note: If you want to be using the matches table after calling expandAlias, you should save it
first as local oldmatches = matches before calling expandAlias, since expandAlias will overwrite it
after using it again.

feedTriggers

feedTriggers(text)
This function will have Mudlet parse the given text as if it came from the MUD - one great
application is trigger testing. You can use \n to represent a new line - you also want to use it
before and after the text you’re testing, like so:

feedTriggers ("\nYou sit yourself down.\n")

The function also accept ANSI color codes that are used in MUDs. A sample table can be
found here.

http://codeworld.wikidot.com/ansicolorcodes
http://codeworld.wikidot.com/ansicolorcodeshttp://codeworld.wikidot.com/ansicolorcodeshttp://codeworld.wikidot.com/ansicolorcodes

Example

feedTriggers ("\nThis is \27[1;32mgreen\27[0;37m, \27[1;31mred\27[0;37m, \
27 [46mcyan background\27[0;37m,"
"\27[32;47mwhite background and green foreground\27[0;37m.\n")

getMudletHomeDir

getMudletHomeDir()
Returns the current home directory of the current profile. This can be used to store data, save
statistical information, or load resource files from packages.

Example

-- save a table
table.save (getMudletHomeDir () .."/myinfo.dat", myinfo)

—-— or access package data. The forward slash works even on Windows fine
local path = getMudletHomeDir ().."/mypackagename"

playSoundFile

playSoundFile(fileName)
This function plays a sound file. On 2.0, it can play most sound formats and up to 4 sounds
simulaneously.

Parameters

* fileName:
Exact path of the sound file.

Example

-- play a sound in Windows
playSoundFile ([[C:\My folder\boing.wav]])

-- play a sound in Linux
playSoundFile ([[/home/myname/Desktop/boingboing.wav]])

-- play a sound from a package
playSoundFile (getMudletHomeDir () .. [[/mypackage/boingboing.wav]])

registerAnonymousEventHandler

registerAnonymousEventHandler(event name, function name)
Registers a function to an event handler, not requiring you to set one up via s cript.

At the moment, it's not possible to use handlers inside namespaces, or unregister them.

Example

-- example taken from the God Wars 2 (http://godwars2.org) Mudlet UI - forces

the window to keep to a certain size

function keepStaticSize()
setMainWindowSize (1280, 720)

end -- keepStaticSize

registerAnonymousEventHandler ("sysWindowResizeEvent", "keepStaticSize")

spawn
spawn(read function, process to spawn)
Spawns a process and opens a communicatable link with it - read function is the function

you'd like to use for reading output from the process, and ¢ is a table containing functions
specific to this connection - send(data), true/false = isRunning(), and close().

Example

-- simple example on a program that quits right away, but prints whatever it
gets using the 'display' function

local f = spawn(display, "1ls")

display(f.isRunning())

f.close()

Mudlet Object Functions

appendCmdLine

appendCmdLine()
Appends text to the main input line.

Example

-- adds the text "55 backpacks" to whatever is currently in the input line
appendCmdLine ("55 backpacks")

-- makes a link, that when clicked, will add "55 backpacks" to the input line
echoLink ("press me", "appendCmdLine'55 backpack'", "Press me!")

clearCmdLine

clearCmdLine()
Clears the input line of any text that's been entered.

Example

-— don't be evil with this!
clearCmdLine ()

createStopWatch
createStop Watch()

This function creates a stop watch. It is high resolution time measurement tool. Stop watches
can be started, stopped, reset and asked how much time has passed since the stop watch has
been started.

W Note: it's best to re-use stopwatch IDs if you can - Mudlet at the moment does not delete them,
so creating more and more would use more memory.

Returns: The ID of a high resolution clock with milliseconds to measure time more accurately.

Example
In a global script you create all stop watches that you need in your system and store the
respective stopWatch-IDs in global variables:

fightStopWatch = createStopWatch() -- you store the watchID in a global variable
to access it from anywhere

Then you can start the stop watch in some trigger/alias/script with:

startStopWatch (fightStopWatch)

To stop the watch and measure its time in e.g. a trigger script you can write:
fightTime = stopStopWatch(fightStopWatch)

echo("The fight lasted for " .. fightTime .. " seconds.")
resetStopWatch(fightStopWatch)

You can also measure the elapsed time without having to stop the stop watch with
getStopWatchTime.

disableAlias

disableAlias(name)
Disables/deactivates the alias by it’s name. If several aliases have this name, they’ll all be
disabled.

Parameters

* name:
The name of the alias. Passed as a string.
Examples

—--Disables the alias called 'my alias'
disableAlias ("my alias")

disableKey

disableKey(name)
Disables key a key (macro) or a key group. When you disable a key group, all keys within the
group will be implicitly disabled as well.

Parameters

® name:

The name of the key or group to identify what you'd like to disable.

Examples

-— you could set multiple keys on the Fl1 key and swap their use as you wish by
disabling and enabling them

disableKey ("attack macro")

disableKey ("jump macro")

enableKey ("greet macro")

disableTimer

disableTimer(name)
Disables a timer from running it’s script when it fires - so the timer cycles will still be
happening, just no action on them. If you’d like to permanently delete it, use killTrigger
instead.

Parameters

* name:
Expects the timer ID that was returned by tempTimer on creation of the timer or the name of
the timer in case of a GUI timer.

Example

—--Disables the timer called 'my timer'
disableTimer ("my timer")

disableTrigger
disableTrigger(name)
Disables a trigger that was previously enabled.

Parameters

* name:
Expects the trigger ID that was returned by tempTrigger or other temp*Trigger variants, or the
name of the trigger in case of a GUI trigger.

Example

-- Disables the trigger called 'my trigger'
disableTrigger ("my trigger")

enableAlias

enableAlias(name)

Enables/activates the alias by it’s name. If several aliases have this name, they’ll all be
enabled.

Parameters

* name:
Expects the alias ID that was returned by tempTrigger on creation of the alias or the name of
the alias in case of a GUI alias.

Example

--Enables the alias called 'my alias'
enableAlias ("my alias")

enableKey

enableKey(name)
Enables a key (macro) or a group of keys (and thus all keys within it that aren't explicitly
deactivated).

Parameters

® name:

The name of the group that identifies the key.

-— you could use this to disable one key set for the numpad and activate another
disableKey ("fighting keys")
enableKey ("walking keys")

enableTimer
enableTimer(name)
Enables or activates a timer that was previously disabled.

Parameters

* name:
Expects the timer ID that was returned by tempTimer on creation of the timer or the name of
the timer in case of a GUI timer.

—-— enable the timer called 'my timer' that you created in Mudlets timers section
enableTimer ("my timer")

-— or disable & enable a tempTimer you've made
timerID = tempTimer (10, [[echo("hi!™)]1])

-— it won't go off now

disableTimer (timerID)

-- it will continue going off again
enableTimer (timerID)

enableTrigger

enableTrigger(name)

Enables or activates a trigger that was previously disabled.
Parameters

®* name.

Expects the trigger ID that was returned by tempTrigger or by any other temp*Trigger
variants, or the name of the trigger in case of a GUI trigger.

-— enable the trigger called 'my trigger' that you created in Mudlets triggers
section
enableTrigger ("my trigger")

-—- or disable & enable a tempTrigger you've made
triggerID = tempTrigger ("some text that will match in a line", [[echo("hi!")]])

-- it won't go off now when a line with matching text comes by
disableTrigger (triggerID)

-- and now it will continue going off again
enableTrigger (triggerID)

exists

exists(name, type)
Tells you how many things of the given type exist.

Parameters

* name:

The name or the id returned by tempTimer to identify the item.
* Ype:
The type can be 'alias’, 'trigger’, or 'timer".
Example

echo ("I have " .. exists("my trigger", "trigger") .. " triggers called 'my
trigger'!™)

You can also use this alias to avoid creating duplicate things, for example:

-— this code doesn't check if an alias already exists and will keep creating new
aliases
permAlias ("Attack", "General", ""aa$", [[send ("kick rat"™)11])

-— while this code will make sure that such an alias doesn't exist first

-—- we do == 0 instead of 'not exists' because 0 is considered true in Lua
if exists ("Attack", "alias") == 0 then
permAlias ("Attack", "General", ""aas$", [[send ("kick rat")]])

end

getButtonState

getButtonState()
This function can only be used inside a toggle button script

Returns 2 if button is checked, and ! if it's not.

Example

checked = getButtonState();
if checked == 1 then
hideExits ()
else
showExits ()
end;

invokeFileDialog

invokeFileDialog(fileOrFolder, dialogTitle)
Opens a file chooser dialog, allowing the user to select a file or a folder visually. The function
returns the selected path or "" if there was none chosen.

Parameters

* fileOrFolder: true for file selection, false for folder selection.
* dialogTitle: the code to do when the timer is up - wrap it in [[]], or provide a Lua function

Examples

function whereisit ()
local path = invokeFileDialog(false, "Where should we save the file? Select a
folder and click Open")

if path == "" then return nil else return path end
end

isActive

isActive(name, type)
You can use this function to check if something, or somethings, are active.

Parameters

®* name.

The name or the id returned by tempTimer to identify the item.

* Ype:
The type can be 'alias', 'trigger', or 'timer".
Example

echo ("I have " .. isActive("my trigger", "trigger"™) .. " currently active
trigger(s) called 'my trigger'!")

isPrompt

isPrompt()
Returns true or false depending on if the current line being processed is a prompt. This
infallible feature is available for MUDs that supply GA events (to check if yours is one, look
to bottom-right of the main window - if it doesn’t say <No GA>, then it supplies them).

Example use could be as a Lua function, making closing gates on a prompt real easy.

Example

-- make a trigger pattern with 'Lua function', and this will trigger on every
prompt!
return isPrompt ()

killAlias
killAlias(name)
Deletes an alias with the given name. If several aliases have this name, they'll all be deleted.

Parameters

® name:

The name or the id returned by tempTimer to identify the alias.

—-Deletes the alias called 'my alias'
killAlias("my alias")

killTimer

killTimer(id)
Deletes a tempTimer.

W Note: Non-temporary timers that you have set up in the GUI cannot be deleted with this
function. Use disableTimer() and enableTimer() to turn them on or off.

Parameters

* id: the ID returned by tempTimer.
Returns true on success and false if the timer id doesn’t exist anymore (timer has already
fired) or the timer is not a temp timer.

Example

-— create the timer and remember the timer ID
timerID = tempTimer (10, [[echo("hello!™)11)

-- delete the timer
if killTimer (timerID) then echo("deleted the timer") else echo("timer is already
deleted") end

killTrigger
killTrigger(id)
Deletes a tempTrigger.

Parameters
> id:
The ID returned by tempTimer to identify the item. ID is a string and not a number.

Returns true on success and false if the trigger id doesn’t exist anymore (trigger has already
fired) or the trigger is not a temp trigger.

permaAlias

permAlias(name, parent, regex, lua code)
Creates a persistent alias that stays after Mudlet is restarted and shows up in the Script Editor.
Parameters

® name:

The name you’d like the alias to have.

* parent:

The name of the group, or another alias you want the trigger to go in - however if such a
group/alias doesn’t exist, it won’t do anything. Use "" to make it not go into any groups.

> regex:

The pattern that you’d like the alias to use.

* lua code:
The script the alias will do when it matches.
Example

-—- creates an alias called "new alias" in a group called "my group"
permAlias ("new alias", "my group", ""“test$", [[echo ("say it works! This alias
will show up in the script editor too.")11)

W Note: Mudlet by design allows duplicate names - so calling permAlias with the same name will
keep creating new aliases. You can check if an alias already exists with the exists function.

permGroup
permGroup(name, itemtype)
Creates a new group of a given type at the root level (not nested in any other groups). This

group will persist through Mudlet restarts.
Parameters

® name:

The name of the new group you want to create.

* itemtype:

The name of the timer, trigger, or alias.

.\u’l Note: Added to Mudlet in the 2.0 final release.

--create a new trigger group
permGroup ("Combat triggers", "trigger")

—--create a new alias group only if one doesn't exist already

if exists ("Defensive aliases", "alias") == 0 then
permGroup ("Defensive aliases", "alias")

end

permRegexTrigger

permRegexTrigger(name, parent, pattern, lua code)
Creates a persistent trigger with a regex pattern that stays after Mudlet is restarted and shows
up in the Script Editor.

Parameters

* name is the name you’d like the trigger to have.

* parent is the name of the group, or another trigger you want the trigger to go in - however if
such a group/trigger doesn’t exist, it won’t do anything. Use "" to make it not go into any
groups.

» pattern table is a table of patterns that you’d like the trigger to use - it can be one or many.

* [ua code is the script the trigger will do when it matches.

Example

-- Create a regex trigger that will match on the prompt to record your status
permRegexTrigger ("Prompt", "", {"~(\d+)h, (\d+)m"}, [[health =
tonumber (matches[2]; mana = tonumber (matches[3])]]

W Note: Mudlet by design allows duplicate names - so calling permRegexTrigger with the same
name will keep creating new triggers. You can check if a trigger already exists with the exists()
function.

permSubstringTrigger

permSubstring Trigger(name, parent, pattern, lua code)
Creates a persistent trigger with a substring pattern that stays after Mudlet is restarted and
shows up in the Script Editor.

Parameters

* name is the name you’d like the trigger to have.

* parent is the name of the group, or another trigger you want the trigger to go in - however if
such a group/trigger doesn’t exist, it won’t do anything. Use "" to make it not go into any
groups.

* pattern table is a table of patterns that you’d like the trigger to use - it can be one or many.
* lua code is the script the trigger will do when it matches.

Example

—-— Create a trigger to highlight the word "pixie" for us
permSubstringTrigger ("Highlight stuff", "General", {"pixie"},
[[selectString(line, 1) bg("yellow") resetFormat()]])

—-— Or another trigger to highlight several different things
permSubstringTrigger ("Highlight stuff", "General", {"pixie", "cat", "dog",
"rabbit"},

[[selectString(line, 1) fg ("blue") bg("yellow") resetFormat()]])

W Note: Mudlet by design allows duplicate names - so calling permSubstringTrigger with the same
name will keep creating new triggers. You can check if a trigger already exists with the exists()
function.

permTimer
permTimer(name, parent, seconds, lua code)
Creates a persistent timer that stays after Mudlet is restarted and shows up in the Script Editor.

Parameters

* name

Is the name of the timer.

* parent

Is the name of the timer group you want the timer to go in..

* seconds
Is a number specifying a delay after which the timer will do the lua code you give it as a
string.

* lua code is the code with string you are doing this to.

Example

permTimer ("my timer", "first timer group", 4.5, [[send ("my timer that's in my
first timer group fired!™)11)

W Note: Mudlet by design allows duplicate names - so calling permTimer with the same name will
keep creating new timers. You can check if a timer already exists with the exists() function.

printCmdLine
printCmdLine(text)

Replaces the current text in the input line, and sets it to the given text.

printCmdLine ("say I'd like to buy ")

raiseEvent

raiseEvent(event_name, arg-1, ... arg-n)

Raises the event event name. The event system will call the main function (the one that is
called exactly like the script name) of all such scripts that have registered event handlers. If an
event is raised, but no event handler scripts have been registered with the event system, the
event is ignored and nothing happens. This is convenient as you can raise events in your
triggers, timers, scripts etc. without having to care if the actual event handling has been
implemented yet - or more specifically how it is implemented. Your triggers raise an event to
tell the system that they have detected a certain condition to be true or that a certain event has
happened. How - and if - the system is going to respond to this event is up to the system and
your trigger scripts don’t have to care about such details. For small systems it will be more
convenient to use regular function calls instead of events, however, the more complicated
your system will get, the more important events will become because they help reduce
complexity very much.

The corresponding event handlers that listen to the events raised with raiseEvent() need to use
the script name as function name and take the correct number of arguments.

Example

raiseEvent("fight") a correct event handler function would be: myScript(event name). In this
example raiseEvent uses minimal arguments, name the event name. There can only be one
event handler function per script, but a script can still handle multiple events as the first
argument is always the event name. So you can call your own special handlers for individual
events. The reason behind this is that you should rather use many individual scripts instead of
one huge script that has all your function code etc. Scripts can be organized very well in trees
and thus help reduce complexity on large systems.

remember

remember("variable")
This function flags a variable to be saved by Mudlet's variable persistence system.

Parameters

* variable

Variable that you are saving. Can be a table or regular variable. Name must be passed as a
string.

Example

remember ("table Weapons")
remember ("var EnemyHeight")

Variables are automatically unpacked into the global namespace when the profile is loaded.
They are saved to "SavedVariables.lua" when the profile is closed or saved.

resetStopWatch

resetStopWatch(watchlID)
This function resets the time to 0:0:0.0, but does not start the stop watch. You can start it with
startStopWatch — createStopWatch

setConsoleBufferSize

setConsoleBufferSize(consoleName, linesLimit, sizeOfBatchDeletion)
Sets the maximum number of lines can a buffer (main window or a miniconsole) can hold.

Parameters

e consoleName:

The name of the window

e linesLimit:
Sets the amount of lines the buffer should have.

W Note: Mudlet performs extremely efficiently with even huge numbers, so your only limitation is
your computers memory (RAM).

* sizeOfBatchDeletion:

Specifies how many lines should Mudlet delete at once when you go over the limit - it does it
in bulk because it's efficient to do so.

Example

-- sets the main windows size to 5 million lines maximum - which is more than
enough!
setConsoleBufferSize ("main", 5000000, 1000)

setTriggerStayOpen

setTriggerStayOpen(name, number)
Sets for how many more lines a trigger script should fire or a chain should stay open after the
trigger has matched - so this allows you to extend or shorten the fire length of a trigger. The
main use of this function is to close a chain when a certain condition has been met.

Parameters

* name. The name of the trigger which has a fire length set (and which opens the chain).
» number: 0 to close the chain, or a positive number to keep the chain open that much longer.

Examples

-- 1f you have a trigger that opens a chain (has some fire length) and you'd
like it to be closed

-- on the next prompt, you could make a trigger inside the chain with a Lua
function pattern of:

return isPrompt ()

-- and a script of:

setTriggerStayOpen ("''Parent trigger name''", 0)
-- to close it on the prompt!

startStopWatch

startStopWatch(watchID)
Starts the stop watch. — createStopWatch()

stopStopWatch

stopStopWatch(watchID)
Stops the stop watch and returns the elapsed time in milliseconds in form of 0.001. —
createStop Watch()
Returns time as a number

tempAlias

aliasID = tempAlias(regex, code to do)
Creates a temporary alias - temporary in the sense that it won't be saved when Mudlet restarts
(unless you re-create it). The alias will go off as many times as it matches, it is not a one-shot
alias. The function returns an ID for subsequent enableAlias(), disableAlias() and killAlias()
calls.

Parameters

* regex: Alias pattern in regex.
* code to do: The code to do when the alias fires - wrap it in [[]].

Examples

myaliasID = tempAlias (""his$", [[send ("hi"™) echo ("we said hi!")]1])

-— you can also delete the alias later with:
killAlias (myaliasID)

tempBeginOfLineTrigger

tempBeginOfLineTrigger(part of line, code to do)
Creates a trigger that will go off whenever the part of line it's provided with matches the line
right from the start (doesn't matter what the line ends with). This trigger isn't temporary in the
sense that it'll go off only once (it'll go off as often as it matches), but rather it won't be saved
when Mudlet is closed. The function returns the trigger ID for subsequent enableTrigger(),
disableTrigger() and killTrigger() calls. The trigger will go off multiple times until you disable
or destroy it.

Parameters

* part of line: Start of the line that you'd like to match.
* code to do: The code to do when the trigger fires - wrap it in [[]].

Examples

mytriggerID = tempBeginOfLineTrigger ("Hello", [[echo("We matched!")]11)

-—[[now this trigger will match on any of these lines:
Hello

Hello!

Hello, Bob!

but not on:

Oh, Hello

Oh, Hello!

1]
tempColorTrigger

tempColorTrigger(foregroundColor, backgroundColor, code)
Makes a color trigger that triggers on the specified foreground and background color. Both
colors need to be supplied in form of these simplified ANSI 16 color mode codes. The
function returns the trigger ID for subsequent enableTrigger(), disableTrigger() and
killTrigger() calls. The trigger will go off multiple times until you disable or destroy it.

Parameters

» foregroundColor: The foreground color you'd like to trigger on.
* backgroundColor: The background color you'd like to trigger on.
* code: The code you'd like the trigger to run, as a string.

Color codes

= default text color
= light black
dark black
light red

dark red

= light green

= dark green
light yellow
dark yellow

= light blue

10 = dark blue

11 = light magenta
12 = dark magenta
13 = light cyan

14 = dark cyan

15 = light white
16 = dark white

O Jo) U1l w NP O
Il

Ne]
|

Examples

-- This script will re-highlight all text in blue foreground colors on a black
background with a red foreground color

-- on a blue background color until another color in the current line is being
met. temporary color triggers do not

-— offer match all or filter options like the GUI color triggers because this is

rarely necessary for scripting.

-— A common usage for temporary color triggers is to schedule actions on the
basis of forthcoming text colors in a particular context.
tempColorTrigger (9,2, [[selectString (matches[1],1); fg("red"); bg("blue");11)

tempExactMatchTrigger

tempExactMatchTrigger(exact line, code to do)
Creates a trigger that will go off whenever the line from the game matches the provided line
exactly (ends the same, starts the same, and looks the same). You don't need to use any of the
regex symbols here (* and $). This trigger isn't temporary in the sense that it'll go off only
once (it'll go off as often as it matches), but rather it won't be saved when Mudlet is closed.
The function returns the trigger ID for subsequent enableTrigger(), disableTrigger() and
killTrigger() calls. The trigger will go off multiple times until you disable or destroy it.

Parameters

* exact line: Exact line you'd like to match.
* code to do: The code to do when the trigger fires - wrap it in [[]].

Examples

mytriggerID = tempExactMatchTrigger ("You have recovered balance on all limbs.",
[[echo ("We matched!")]1])

tempLineTrigger

tempLineTrigger(from, howMany, LuaCode)
Temporary trigger that will fire on n consecutive lines following the current line. This is
useful to parse output that is known to arrive in a certain line margin or to delete unwanted
output from the MUD - the trigger does not require any patterns to match on. The function
returns the trigger ID for subsequent enableTrigger(), disableTrigger() and killTrigger() calls.
The trigger will go off multiple times until you disable or destroy it.

Returns trigger ID as a string.

W Note: You can use this ID to enable/disable or kill this trigger later on.

Example

--Will fire 3 times with the line from the MUD.
tempLineTrigger (1, 3,)

--Will fire 20 lines after the current line and fire twice on 2 consecutive
lines.
tempLineTrigger (20, 2,)

tempRegexTrigger

tempRegexTrigger(regex, code to do)
Creates a temporary regex trigger that executes the code whenever it matches. The function
returns the trigger ID for subsequent enableTrigger(), disableTrigger() and killTrigger() calls.
The trigger will go off multiple times until you disable or destroy it.

Parameters

* regex: The regular expression that lines will be matched on.
* code to do: The code to do when the timer is up - wrap it in [[]].

Examples

-— create a non-duplicate trigger that matches on any line and calls a function
html5log = html5log or {}

if html5log.trig then killTrigger (html5log.trig) end

html5log.trig = tempRegexTrigger (""", "html5log.recordline()")

tempTimer

tempTimer(time, code to do)
Creates a temporary one-shot timer and returns the timer ID, which you can use with
enableTimer(), disableTimer() and killTimer() functions. You can use 2.3 seconds or 0.45 etc.
After it has fired, the timer will be deactivated and destroyed, so it will only go off once. See
the Technical Manual here for a more detailed introduction to tempTimer.

Parameters

* time: The time in seconds for which to set the timer for - you can use decimals here for
precision. The timer will go off x given seconds after you make it.
* code to do: The code to do when the timer is up - wrap it in [[]], or provide a Lua function.

Examples

-— wait half a second and then run the command
tempTimer (0.5, [[send("kill monster")]])

-—- or an another example - two ways to 'embed' variable in a code for later:
local name = matches[2]
tempTimer (2, [[send("hello,]]..name..[[!'")]1])
-- or:
tempTimer (2, function ()
send ("hello, "..name)
end)

W Note: Double brackets, e.g: [[]] can be used to quote strings in Lua. The difference to the usual
""" quote syntax is that ‘[[]] also accepts the character ". Consequently, you don’t have to escape
the " character in the above script. The other advantage is that it can be used as a multiline quote, so
your script can span several lines.

W Note: Lua code that you provide as an argument is compiled from a string value when the timer
fires. This means that if you want to pass any parameters by value e.g. you want to make a function
call that uses the value of your variable myGold as a parameter you have to do things like this:

tempTimer (3.8, [[echo("at the time of the tempTimer call I had]] .. myGold
[[gold.™) 1])
-— tempTimer also accepts functions (and thus closures) - which can be an easier

way to embed variables and make the code for timers look less messy:

local variable = matches[2]
tempTimer (3, function () send("hello, " .. variable) end)

tempTrigger

tempTrigger(substring, code to do)
Creates a temporary substring trigger that executes the code whenever it matches. The

http://wiki.mudlet.org/w/Manual:Introduction#Timers

function returns the trigger ID for subsequent enableTrigger(), disableTrigger() and
killTrigger() calls. The trigger will go off multiple times until you disable or destroy it.

Parameters

* substring:: The substring to look for - this means a part of the line. If your provided text
matches anywhere within the line from the game, the trigger will go off.
* code to do: The code to do when the timer is up - wrap it in [[]].

Example:

—-- this example will highlight the contents of the "target" variable.

-- It will also delete the previous trigger it made when you call it again, so
you're only ever highlighting one name

if id then killTrigger (id) end

id = tempTrigger (target, [[selectString("]] .. target .. [[", 1) fg("gold")
resetFormat () 11)

-- a simpler trigger to replace "hi" with "bye" whenever you see it
tempTrigger ("hi", [[selectString("hi", 1) replace("bye")]])

tempButton
tempButton(group name, button text, orientation)
Creates a temporary button.

Parameters

* group name:: The toolbar to place the button into.
* button text: The text to place on the button.

* orientation: a number, 0 - horizontal orientation for the button, or 1 - vertical orientation for
the button.

Networking Functions

A collection of functions for managing networking.

disconnect

disconnect()
Disconnects you from the game right away. Note that this will not properly log you out of the
game.

Example

disconnect ()

downloadFile

downloadFile(saveto, url)
Downloads the resource at the given url into the saveto location on disk. This does not pause
the script until the file is downloaded - instead, it lets it continue right away and downloads in
the background. When a download is finished, the sysDownloadDone event is raised (with the

saveto location as the argument), or when a download fails, the sysDownloadError event is
raised with the reason for failure. You may call downloadFile multiple times and have
multiple downloads going on at once - but they aren’t guaranteed to be downloaded in the
same order that you started them in.

W Note: Requires Mudlet 2.0+

Example

-- this example will check the Imperian homepage to see how many players are on
right now

-- in an alias, download the Imperian homepage for stats processing
downloadFile (getMudletHomeDir () .."/page.html"™, "http://www.imperian.com/")

-— then create a new script with the name of downloaded file, add the event
handler
-— for sysDownloadDone, and use this to parse the webpage and display the amount
function downloaded file(, filename)

-- is the file that downloaded ours?

if not filename:match ("page", 1, true) then return end

-—- parse our ownloaded file for the player count
io.input (filename)

local s = io.read("*all")
local pc = s:match([[(%d+)]1])
display("Imperian has "..tostring(pc).." players on right now.")
io.open () :close()
os.remove (filename)

end

getNetworkLatency

getNetworkLatency()

Returns the last measured response time between the sent command and the server reply e.g.
0.058 (=58 milliseconds lag) or 0.309 (=309 milliseconds). Also known as server lag.

Example
Need example

openUrl

openUrl (url)
Opens the default OS browser for the given URL.

Example

openUrl ("http://google.com")
openUrl ("www.mudlet.org")

reconnect

reconnect()
Force-reconnects (so if you're connected, it'll disconnect) you to the game.

Example

-- you could trigger this on a log out message to reconnect, if you'd like
reconnect ()

sendAll

sendAll(list of things to send, [echo back or not])
send()'s a list of things to the game. If you'd like the commands not to be shown, include false
at the end.

Example

-- instead of using many send() calls, you can use one sendAll

sendAll ("outr paint", "outr canvas", "paint canvas")
-— can also have the commands not be echoed

sendAll ("hi", "bye", false)

sendGMCP

sendGMCP(command)

Sends a GMCP message to the server. The IRE document on GMCP has information about
what can be sent, and what tables it will use, etcetera.

See Also: Scripting Manual: GMCP Scripting

Example

--This would send "Core.KeepAlive" to the server, which resets the timeout
sendGMCP ("Core.KeepAlive")

--This would send a request for the server to send an update to the

gmcp.Char.Skills.Groups table.
sendGMCP ("Char.Skills.Get {}")

--This would send a request for the server to send a list of the skills in the
--vision group to the gmcp.Char.Skills.List table.

sendGMCP ([[Char.Skills.Get { "group": "vision"}11)

--And finally, this would send a request for the server to send the info for
--hide in the woodlore group to the gmcp.Char.Skills.Info table

sendGMCP ([[Char.Skills.Get { "group": "woodlore", "name": "hide"}]])

sendlIrc

sendlrc(channel, message)
Sends a message to an IRC channel or person. You must have the IRC window open, and if
speaking to a channel, be joined in that channel. IRC currently only works on the freenode
network and password-protected channels aren't supported.

Parameters

http://wiki.mudlet.org/w/Manual:Scripting#GMCP
http://www.ironrealms.com/gmcp-doc

e channel:

The channel to send the message to. Can be #<channelname> to send to a channel, or <person
name> to send to a person. Passed as a string.

®* message.

The message to send. Passed as a string.

Example

--This would send
sendIrc ("#mudlet",
--This would send
freenode.net

sendIrc ("Nickserv"

"hello from Mudlet!" to the channel #mudlet on freenode.net
"hello from Mudlet!")
"identify password" in a private message to Nickserv on

, "identify password")

sendTelnetChannel102

sendTelnetChannel102(msg)
Sends a message via the 102 subchannel back to the MUD (that's used in Aardwolf). The msg
is in a two byte format - see “help telopts® in Aardwolf on how that works.

Example

-- turn prompt flags on:
sendTelnetChannell02 ("\52\1")

-—- turn prompt flags off:
sendTelnetChannell02 ("\52\2")

String Functions

string.byte

string.byte(string [, 1 [, j]])
mystring:byte([, i [, j1])
Returns the internal numerical codes of the characters s [1], s[i+1], - -, s[]J].The
default value for i is 1; the default value for J is i.
Note that numerical codes are not necessarily portable across platforms.
See also: string.char

Example

--The following call will return the ASCII values of "A", "B" and "C"
a, b, ¢ = string.byte("ABC", 1, 3)

echo(a .. " - "

string.char

string.char(--)

. b .." -" .. c) -- echos "65 - 66 - 67"

Receives zero or more integers. Returns a string with length equal to the number of

arguments, in which each character has the internal numerical code equal to its corresponding
argument.

W Note: Numerical codes are not necessarily portable across platforms.

See also: string.byte

Example

--The following call will return the string "ABC" corresponding to the ASCII
values 65, 66, 67
mystring = string.char (65, 66, 67)

string.cut

string.cut(string, maxLen)
Cuts string to the specified maximum length.
Returns the modified string.

Parameters

* string:

The text you wish to cut. Passed as a string.

* maxLen:

The maximum length you wish the string to be. Passed as an integer number.

Example

--The following call will return 'abc' and store it in myString

mystring = string.cut ("abcde", 3)

--You can easily pad string to certain length. Example below will print 'abcde
' e.g. pad/cut string to 10 characters.

local s = "abcde"

s = string.cut(s .. " ", 10) -- append 10 spaces

echo("'"™ .. s "

string.dump

string.dump()
Need information here!!!
Example

Need example

string.enclose

string.enclose(String)
Wraps a string with [[]]
Returns the altered string.

Parameters

* String:

The string to enclose. Passed as a string.

Example

—--This will echo '[[Oh noes!]]' to the main window
echo("'" .. string.enclose("Oh noes!") .. "'™)
string.ends

string.ends(String, Suffix)
Test if string is ending with specified suffix.
Returns true or false.

See also: string.starts

Parameters

* String:

The string to test. Passed as a string.

o Suffix:

The suffix to test for. Passed as a string.

Example

--This will test if the incoming line ends with "in bed" and if not will add it
to the end.
if not string.ends(line, "in bed") then
echo ("in bed\n")
end

string.find

string.find()
Need description
Example

Need example

string.findPattern

string.findPattern(text, pattern)
Return first matching substring or nil.

Parameters

* fext:

The text you are searching the pattern for.

* pattern:

The pattern you are trying to find in the text.
Example

Following example will print: "I did find: Troll" string.

local match = string.findPattern("Troll is here!", "Troll")
if match then

echo ("I did find: " .. match)
end

This example will find substring regardless of case.

local match = string.findPattern("Troll is here!",
string.genNocasePattern ("troll"))
if match then
echo ("I did find: " .. match)
end

e Return value:

nil or first matching substring

See also: string.genNocasePattern()

string.format

string.format()
Need description here.
Example

Need example

string.genNocasePattern
string.genNocasePattern(s)
Generate case insensitive search pattern from string.

Parameters

* s
Example
Following example will generate and print "123[aA][bB][cC]" string.

echo (string.genNocasePattern ("123abc"))

e Return value:

case insensitive pattern string

string.gfind

string.gfind()
Need description here.

Example

Need example

string.gmatch

string.gmatch()
Need description here.
Example

Need example

string.gsub

string.gsub()
Need description here.
Example

Need example

string.len

string.len(String)

mystring:len()
Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are
counted, so "a\000bc\000" has length 5.

Parameters

* String:
The string you want to find the length of. Passed as a string.

Example

Need example

string.lower

string.lower(String)

mystring:lower()
Receives a string and returns a copy of this string with all uppercase letters changed to
lowercase. All other characters are left unchanged. The definition of what an uppercase letter
is depends on the current locale.

See also: string.upper

Example

Need example

string.match

string.match()

Need description here.
Example

Need example

string.rep

string.rep(String, n)
mystring:rep(n)
Returns a string that is the concatenation of n copies of the string String.

Example
Need example

string.reverse

string.reverse(string)
mystring:reverse()

Returns a string that is the string st ring reversed.
Parameters

* string:

The string to reverse. Passed as a string.

Example

mystring = "Hello from Lua"
echo (mystring:reverse()) -- displays 'aul morf olleH'

string.split

string.split(string, delimiter)

myString:split(delimiter)
Splits a string into a table by the given delimiter. Can be called against a string (or variable
holding a string) using the second form above.
Returns a table containing the split sections of the string.

Parameters

* string:

The string to split. Parameter is not needed if using second form of the syntax above. Passed
as a string.

e delimiter:

The delimiter to use when splitting the string. Passed as a string.

Example

-- This will split the string by ", " delimiter and print the resulting table to
the main window.

names = "Alice, Bob, Peter"
name table = string.split(names, ", ")
display (name_table)

--The alternate method

names = "Alice, Bob, Peter"
name_ table = names:split (", ")
display (name_ table)

Either method above will print out:
table {

1:'Alice’

2: 'Bob'

3: 'Peter’

string.starts

string.starts(string, prefix)

Test if string is starting with specified prefix.
Returns true or false

See also: string.ends

Parameters

* string:

The string to test. Passed as a string.

* prefix:

The prefix to test for. Passed as a string.
Example

--The following will see if the line begins with "You" and if so will print a
statement at the end of the line
if string.starts(line, "You") then
echo ("====0h you====\n")
end

string.sub

string.sub()
Need description here.
Example

Need example

string.title

string.title(string)
string:title()

Capitalizes the first character in a string.
Returns the altered string.

Parameters

* string:

The string to modify. Not needed if you use the second form of the syntax above.

Example

--Variable testname is now Anna.

testname = string.title("anna")
--Example will set test to "Bob".
test = "bob"

test = test:title()

string.trim

string.trim(string)
Trims string, removing all 'extra’ white space at the beginning and end of the text.
Returns the altered string.

Parameters

* string:

The string to trim. Passed as a string.

Example

--This will print 'Troll is here!', without the extra spaces.
local str = string.trim(" Troll is here! ")
echo("'"™ .. str .. "'™)

string.upper

string.upper(string)

mystring:upper()
Receives a string and returns a copy of this string with all lowercase letters changed to
uppercase. All other characters are left unchanged. The definition of what a lowercase letter is
depends on the current locale.

Parameters
* string:
The string you want to change to uppercase

Example

-- displays 'RUN BOB RUN'
local str = string.upper ("run bob run")

See also: string.lower

Table Functions

table.complement

table.complement (setl, set2)
Returns a table that is the relative complement of the first table with respect to the second
table. Returns a complement of key/value pairs.

Parameters

e tablel:
e table2:

table.concat

table.concat(table, delimiter, startingindex, endingindex)
Joins a table into a string. Each item must be something which can be transformed into a
string.
Returns the joined string.
See also: string.split

Parameters

e table:

The table to concatenate into a string. Passed as a table.

e delimiter:

Optional string to use to separate each element in the joined string. Passed as a string.

* startingindex:

Optional parameter to specify which index to begin the joining at. Passed as an integer.

* endingindex:

Optional parameter to specify the last index to join. Passed as an integer.

Examples

--This shows a basic concat with none of the optional arguments
testTable = {1,2,"hi","blah",}

testString = table.concat (testTable)

-—-testString would be equal to "12hiblah"

--This example shows the concat using the optional delimiter
testString = table.concat (testTable, ", ")
--testString would be equal to "1, 2, hi, blah"

--This example shows the concat using the delimiter and the optional starting
index
testString = table.concat (testTable, ", ", 2)

--testString would be equal to "2, hi, blah"

--And finally, one which uses all of the arguments
testString = table.concat (testTable, ", ", 2, 3)
--testString would be equal to "2, hi"

table.contains

table.contains (t, value)
Determines if a table contains a value as a key or as a value (recursive).
Returns true or false

Parameters

e ft:

The table in which you are checking for the presence of the value.

e value:

The value you are checking for within the table.

Example
local test table = { "valuel", "value2", "value3", "valued" }
if table.contains(test table, "valuel") then
echo ("Got value 1!")
else
echo ("Don't have it. Sorry!")
end

This example would always echo the first one, unless you remove valuel from the table.
table.foreach
table.intersection

table.insert

table.insert(table, [pos,] value)
Inserts element value at position pos in table, shifting up other elements to open space, if
necessary. The default value for pos is n+1, where n is the length of the table, so that a call
table.insert(t,x) inserts x at the end of table t.
See also: table.remove

Parameters

* table:

The table in which you are inserting the value

* pos:

Optional argument, determining where the value will be inserted.

e value:

The variable that you are inserting into the table. Can be a regular variable, or even a table or
function*.

W Note: Inserting a function into a table is not good coding practice, and will not turn out how you
think it would.

table.index_of

table.is_empty
table.is_empty(table)
Check if a table is devoid of any values.

Parameters

e table:

The table you are checking for values.

table.load

table.load(location, table)
Load a table from an external file into mudlet.
See also: table.save

Parameters

* Jocation:

Where you are loading the table from. Can be anywhere on your computer.

* table:

The table that you are loading into - it must exist already.

Example:

-— This will load the table mytable from the lua file mytable present in your
Mudlet Home Directory.

mytable = {}

table.load (getMudletHomeDir () .."/mytable.lua", mytable) -- using / is OK on
Windows too.

-- You can load a table from anywhere on your computer, but it's preferable to
have them consolidated somewhere connected to Mudlet.

table.maxn

table.maxn(Table)
Returns the largest positive numerical index of the given table, or zero if the table has no
positive numerical indices. (To do its job this function does a linear traversal of the whole
table.)

table.n_union
table.n_complement
table.n_intersection
table.pickle

table.remove

table.remove(table, value position)
Remove a value from an indexed table, by the values position in the table.
See also: table.insert

Parameters

* table

The indexed table you are removing the value from.

* value position

The indexed number for the value you are removing.

Example

testTable = { "hi", "bye", "cry", "why" }

table.remove (testTable, 1) -- will remove hi from the table
-- new testTable after the remove

testTable = { "bye", "cry", "why" }

-- original position of hi was 1, after the remove, position 1 has become bye
-- any values under the removed value are moved up, 5 becomes 4, 4 becomes 3,
etc

W Note: To remove a value from a key-value table, it's best to simply change the value to nil.

testTable = { test = "testing", go = "boom", frown = "glow" }
table.remove (testTable, test) -- this will error
testTable.test = nil -- won't error

testTable["test"] = nil -- won't error

table.save

table.save(location, table)
Save a table into an external file in location.
See also: table.load

Parameters

e Jocation:

Where you want the table file to be saved. Can be anywhere on your computer.

* table:

The table that you are saving to the file.

Example:

-- Saves the table mytable to the lua file mytable in your Mudlet Home Directory
table.save (getMudletHomeDir () .."/mytable.lua", mytable)

table.sort

table.sort(Table [, comp])
Sorts table elements in a given order, in-place, from Table[1] to Table [n], where n is
the length of the table.

If comp is given, then it must be a function that receives two table elements, and returns true
when the first is less than the second (so that not comp (a[i+1],a[1]) will be true after
the sort). If comp is not given, then the standard Lua operator < is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given order may
have their relative positions changed by the sort.

table.size

table.size (t)
Gets the actual size of non-index based tables.
Returns a number.

Parameters

s I

The table you are checking the size of.

W Note: For index based tables you can get the size with the # operator: This is the standard Lua
way of getting the size of index tables i.e. ipairs() type of tables with numerical indices. To get the
size of tables that use user defined keys instead of automatic indices (pairs() type) you need to use
the function table.size() referenced above.

local test table = { "valuel", "value2", "value3", "valued" }
myTableSize = #test table

-— This would return 4.

local myTable = { 1 = "hello", "key2" = "bye", "key3" = "time to go" }
table.size (myTable)

-- This would return 3.

table.setn
table.unpickle
table.update

table.union

UI Functions

appendBuffer

appendBuffer(name)
Pastes the previously copied rich text (including text formats like color etc.) into user window
name.

See also: paste()

Parameters

* name:
The name of the user window to paste into. Passed as a string.
Example
—--selects and copies an entire line to user window named "Chat"

selectCurrentLine ()

copy ()
appendBuffer ("Chat")

bg

bg(colorName)
Changes the background color of the text. Useful for highlighting text.

See Also: fg(), setBgColor()

Parameters

e colorName:

The name of the color to set the background to.

Example

--This would change the background color of the text on the current line to
magenta

selectCurrentLine ()

bg ("magenta")

http://wiki.mudlet.org/w/File:ShowColors.png

calcFontSize

calcFontSize(fontSize)
Used to calculate the number of pixels wide and high a character would be on a mini console
at fontSize.
Returns two numbers, width/height
See Also: setMiniConsoleFontSize(), getMainWindowSize()

Parameters

* fontSize:

The font size you are wanting to calculate pixel sizes for. Passed as an integer number.

Example

--this snippet will calculate how wide and tall a miniconsole designed to hold 4
lines of text 20 characters wide

--would need to be at 9 point font, and then changes miniconsole Chat to be that
size

local width,height = calcFontSize (9)

width = width * 20

height = height * 4

resizeWindow ("Chat", width, height)

cecho

cecho(window, text)
Echoes text that can be easily formatted with colour tags.
See Also: decho(), hecho()

Parameters

* window:

Optional - the window name to echo to - can either be none or "main" for the main window,
or the miniconsoles name.

* ftext:

The text to display, with color names inside angle brackets <>, ie <red>. If you'd like to use a
background color, put it after a double colon : - <:red>. You can use the <resef> tag to reset

to the default color. You can select any from this list:

Example

cecho ("Hi! This text is <red>red, <blue>blue, <green> and green.")

cecho ("<:green>Green background on normal foreground. Here we add an
<ivory>ivory foreground.")

cecho ("<blue:yellow>Blue on yellow text!")

cecho ("myinfo", "<green>All of this text is green in the myinfo miniconsole.")

http://wiki.mudlet.org/w/File:ShowColors.png

cinsertText

cinsertText(window, text)
inserts text at the current cursor position, with the possibility for color tags.
See Also: cecho()

Parameters

* window:

Optional - the window name to echo to - can either be none or "main" for the main window,
or the miniconsoles name.

* fext:

The text to display, with color names inside angle brackets <>, ie <red>. If you'd like to use a
background color, put it after a double colon : - <:red>. You can use the <resef> tag to reset

to the default color. You can select any from this list:

Example

cinsertText ("Hi! This text is <red>red, <blue>blue, <green> and green.")

cinsertText ("<:green>Green background on normal foreground. Here we add an
<ivory>ivory foreground.")

cinsertText ("<blue:yellow>Blue on yellow text!")

cinsertText ("myinfo", "<green>All of this text is green in the myinfo
miniconsole.")
clearUserWindow

clearUserWindow(name)
Clears the window or miniconsole with the name given as argument.

Parameters

®* name.

The name of the user window to clear. Passed as a string.

Example

--This would clear a user window, or miniconsole with the name "Chat"
clearUserWindow ("Chat")

clearWindow

clearWindow([optional name])
Clears the window or miniconsole with the name given as argument (removes all text from it).
If you don't give it a name, it will clear the main window.
See also: clearUserWindow()

http://wiki.mudlet.org/w/File:ShowColors.png

Parameters

¢* name:

The name of the user window to clear. Passed as a string.

Example

--This would clear a label, user window, or miniconsole with the name "Chat"
clearWindow ("Chat")

-- this can clear your whole main window - needs 2.0-test3+
clearWindow ()

Ccopy

copy()
Copies the current selection to the clipboard. This function operates on rich text, i. e. the

selected text including all its format codes like colors, fonts etc. in the clipboard until it gets
overwritten by another copy operation. example: This script copies the current line on the
main screen to a user window (mini console) named chat and gags the output on the main
screen.

See Also: selectString(), selectCurrentLine()

Parameters
None

Example

selectString(line)

copy ()
appendBuffer ("chat")

replace ("This line has been moved to the chat window!")

createBuffer

createBuffer(name)
Creates a named buffer for formatted text, much like a miniconsole, but the buffer is not
intended to be shown on the screen - use it for formatting text or storing formatted text.

Parameters

®* name.

The name of the buffer to create.

Example

--This creates a named buffer called "scratchpad"
createBuffer ("scratchpad")

createConsole

createConsole(consoleName, fontSize, charsPerLine, numberOfLines, Xpos, Ypos)
Makes a new miniconsole. The background will be black, and the text color white.

Parameters

e consoleName:

The name of your new miniconsole. Passed as a string.

* fontSize:

The font size to use for the miniconsole. Passed as an integer number.

e charsPerLine:

How many characters wide to make the miniconsole. Passed as an integer number.

* numberOfLines:

How many lines high to make the miniconsole. Passed as an integer number.

* Xpos:

X position of miniconsole. Measured in pixels, with 0 being the very left. Passed as an integer
number.

* Ypos:

Y position of miniconsole. Measured in pixels, with 0 being the very top. Passed as an integer
number.

Example

-— this will create a console with the name of "myConsoleWindow", font size 8,
80 characters wide,

-- 20 lines high, at coordinates 300x,400y

createConsole ("myConsoleWindow", 8, 80, 20, 200, 400)

createGauge

createGauge(name, width, Xpos, Ypos, gaugeText, r, g, b)

createGauge(name, width, Xpos, Ypos, gaugeText, colorName)
Creates a gauge that you can use to express completion with. For example, you can use this as
your healthbar or xpbar.
See also: moveGauge(), setGauge(), setGaugeText()

Parameters

®* name:

The name of the gauge. Must be unique, you can not have two or more gauges with the same
name. Passed as a string.

* width:

The width of the gauge, in pixels. Passed as an integer number.

* height:

The height of the gauge, in pixels. Passed as an integer number.

* Xpos:

X position of gauge. Measured in pixels, with 0 being the very left. Passed as an integer
number.

* Ypos:

Y position of gauge. Measured in pixels, with 0 being the very top. Passed as an integer
number.

* gaugeText:

Text to display on the gauge. Passed as a string, unless you do not wish to have any text, in
which case you pass nil

*

The red component of the gauge color. Passed as an integer number from 0 to 255

° g“
The green component of the gauge color. Passed as an integer number from 0 to 255

e b:

The blue component of the gauge color. Passed as an integer number from 0 to 255

e colorName:

the name of color for the gauge. Passed as a string.

Example

-- This would make a gauge at that's 300px width, 20px in height, located at
Xpos and Ypos and is green.

—-— The second example is using the same names you'd use for something like
[[fg]]1 () or [[bgl]l().

createGauge ("healthBar", 300, 20, 30, 300, nil, 0, 255, 0)

createGauge ("healthBar", 300, 20, 30, 300, nil, "green")

-—- If you wish to have some text on your label, you'll change the nil part and
make it look like this:

createGauge ("healthBar", 300, 20, 30, 300, "Now with some text", 0, 255, 0)

-- or

createGauge ("healthBar", 300, 20, 30, 300, "Now with some text", "green")

Note

--If you want to put text on the back of the gauge when it's low, use an echo
with the gaugeName back.

echo ("gaugeName back", "This is a test of putting text on the back of the
gauge!")

createLabel

createLabel(name, Xpos, Ypos, width, height, fillBackground)
Creates a highly manipulable overlay which can take some css and html code for text
formatting. Labels are clickable, and as such can be used as a sort of button. Labels are meant
for small variable or prompt displays, messages, images, and the like. You should not use
them for larger text displays or things which will be updated rapidly and in high volume, as
they are much slower than miniconsoles.
Returns true or false.
See also: hideWindow(), showWindow(), resizeWindow(), setLabelClickCallback(),
setTextFormat(), setTextFormat(), setMiniConsoleFontSize(), setBackgroundColor(),
getMainWindowSize(), calcFontSize()

Parameters

® name:

The name of the label. Must be unique, you can not have two or more labels with the same
name. Passed as a string.

* Xpos:

X position of the label. Measured in pixels, with 0 being the very left. Passed as an integer
number.

* Ypos:

Y position of the label. Measured in pixels, with 0 being the very top. Passed as an integer
number.

* width:

The width of the label, in pixels. Passed as an integer number.

* height:

The height of the label, in pixels. Passed as an integer number.

* fillBackground:

Whether or not to display the background. Passed as either 1 or 0. 1 will display the
background color, 0 will not.

Example

--This example creates a transparent overlay message box to show a big warning
message "You are under attack!"™ in the middle

--of the screen. Because the background color has a transparency level of 150
(0-255, with 0 being completely transparent

--and 255 non-transparent) the background text can still be read through. The
message box will disappear after 2.3 seconds.

local width, height = getMainWindowSize () ;

createlabel ("messageBox", (width/2)-300, (height/2)-100,250,150,1);

resizeWindow ("messageBox", 500, 70) ;

moveWindow ("messageBox", (width/2)-300, (height/2)-100);

setBackgroundColor ("messageBox", 150,100,100,200);

echo ("messageBox", [[<p style="font-size:35px"><center>You
are under attack!</center></p>11);

showWindow ("messageBox") ;
tempTimer (2.3, [[hideWindow ("messageBox")]]) -- close the warning message box
after 2.3 seconds

createMiniConsole

createMiniConsole(name, posX, posY, width, height)
Opens a miniconsole window inside the main window of Mudlet. This is the ideal fast colored
text display for everything that requires a bit more text, such as status screens, chat windows,
etc.
Returns true or false.
See also: createlabel(), hideWindow(), showWindow(), resizeWindow(), setTextFormat(),
moveWindow(), setMiniConsoleFontSize(), handleWindowResizeEvent(), setBorderTop(),
setWindowWrap(), getMainWindowSize(), calcFontSize()

Parameters

* name:

The name of the miniconsole. Must be unique, you can not have two or more miniconsoles
with the same name. Passed as a string.

* Xpos:

X position of the miniconsole. Measured in pixels, with 0 being the very left. Passed as an
integer number.

* Ypos:

Y position of the miniconsole. Measured in pixels, with 0 being the very top. Passed as an
integer number.

* width:

The width of the miniconsole, in pixels. Passed as an integer number.

* height:

The height of the miniconsole, in pixels. Passed as an integer number.

Example

--This script would create a mini text console called "sys" and write with
yellow foreground color and blue background color
--"Hello World".

-- set up the small system message window in the top right corner
-- determine the size of your screen

WindowWidth = 0;

WindowHeight = 0;

WindowWidth, WindowHeight = getMainWindowSize () ;

createMiniConsole ("sys",WindowWidth-650,0, 650, 300)
setBackgroundColor ("sys",85,55,0,255)
setMiniConsoleFontSize ("sys", 8)

-- wrap lines in window "sys" at 40 characters per line

setWindowWrap ("sys", 40)
-- set default font colors and font style for window "sys"
setTextFormat ("sys",0,35,255,50,50,50,0,0,0)

echo ("sys","Hello world!")

decho

decho ([name of console,] text)
Color changes can be made using the format <FR,FG,FB:BR,BG,BB> where each field is a
number from 0 to 255. The background portion can be omitted using <FR,FG,FB> or the
foreground portion can be omitted using <:BR,BG,BB>. Arguments 2 and 3 set the default
fore and background colors for the string using the same format as is used within the string,
sans angle brackets, e.g. decho("<50,50,0:0,255,0>test").

Parameters

* fext:

The text that you’d like to echo with embedded color tags. Tags take the RGB values only, see
below for an explanation.

* name of console

Optional name of the console to echo to. Defaults to main.

Example

decho ("<50,50,0:0,255,0>test")

decho ("miniconsolename", "<50,50,0:0,255,0>test")

deleteLine

deleteLine()
Deletes the current line under the user cursor. This is a high speed gagging tool and is very
good at this task, but is only meant to be use when a line should be omitted entirely in the
output. If you echo() to that line it will not be shown, and lines deleted with deleteLine() are
simply no longer rendered. For replacing text, replace() is the proper option - doing
selectCurrentLine(), replace(""); cecho("new line!\n") is better.
See Also: replace(), wrapLine()

W Note: you do not need to put anything between () - it just deletes the line it is used on.

Example

-- deletes the line - just put this command into the big script box. Keep the
case the same -

-— it has to be deletelLine (), not Deleteline(), deleteline() or anything else
deletelLine ()

--This example creates a temporary line trigger to test if the next line is a
prompt, and if so gags it entirely.

—--This can be useful for keeping a pile of prompts from forming if you're
gagging chat channels in the main window

--Note: isPrompt () only works on servers which send a GA signal with their
prompt.
tempLineTrigger (1, 1, [[if isPrompt () then deletelLine() end]])

-- example of deleting multiple lines:

deleteline () -— delete the current line
moveCursor (0, getLineNumber () -1) -— move the cursor back one line
deleteline () -- delete the previous line now
deselect

deselect([optional window name])
This is used to clear the current selection (to no longer have anything selected). Should be
used after changing the formatting of text, to keep from accidentally changing the text again
later with another formatting call.

Parameters

* name:
The name of the buffer/miniConsole to stop having anything selected in. This is an optional
argument, if name is not provided the main window will have its selection cleared.

Example

--This will change the background on an entire line in the main window to red,
and then properly clear the selection to keep further

--changes from effecting this line as well.

selectCurrentLine ()

bg ("red")

deselect ()

echoLink

echoLink([windowName], text, command, hint, [bool use current format or defaultLinkFormat])
Echos a piece of text as a clickable link, at the end of the current selected line - similar to

echo().

Parameters

* fext:

text to display in the echo. Same as a normal echo().

e command:

lua code to do when the link is clicked.

* hint:

text for the tooltip to be displayed when the mouse is over the link.

* window:

if true, then the link will use the current selection style (colors, underline, etc). If missing or
false, it will use the default link style - blue on black underlined text.

Example

-— echo a link named 'press me!' that'll send the 'hi' command to the game
echolink ("press me!", [[send("hi")]], "This is a tooltip")

-- do the same, but send this link to a miniConsole
echoLink ("my miniConsole", "press me!", [[send("hi"™)]], "This is a tooltip")

echoUserWindow

echoUserWindow(windowName)
This function will print text to both mini console windows, dock windows and labels. It is
outdated however - echo() instead.

echoPopup

echoPopup([window], text, {commands}, {hints}, [current or default format])
Creates text with a left-clickable link, and a right-click menu for more options at the end of
the current line, like echo. The added text, upon being left-clicked, will do the first command
in the list. Upon being right-clicked, it'll display a menu with all possible commands. The
menu will be populated with hints, one for each line.

Parameters

* window:

Optional - the window to echo to - use either main or omit for the main window, or the
miniconsoles name otherwise.

®* name:

the name of the console to operate on. If not using this in a miniConsole, use "main" as the
name.

* {lua code)}:

a table of lua code strings to do. ie,
{[[send("hello")1], [l[echo("hi!"]]}
o [hints}:
a table of strings which will be shown on the popup and right-click menu. ie,

{"send the hi command", "echo hi to yourself"}

* current or default format:

a boolean value for using either the current formatting options (colour, underline, italic) or the
link default (blue underline).

Example

-- Create some text as a clickable with a popup menu:
echoPopup ("activities to do", {[[send "sleep"]], [[send "sit"]], [I[send

"stand"]]}, {"sleep", "sit", "stand"})

fg

fg(colorName)
If used on a selection, sets the foreground color to colorName - otherwise, it will set the color
of the next text-inserting calls (echo(), insertText, echoLink(), and others)
See Also: bg(), setBgColor()

Parameters

e colorName:

The name of the color to set the foreground to - list of possible names:

Example

--This would change the color of the text on the current line to green
selectCurrentLine ()

fg("green")

resetFormat ()

--This will echo red, green, blue in their respective colors
fg("red™)

echo("red ")

fg("green")

echo ("green ")

fg("blue™)

echo ("blue ")

resetFormat ()

getBgColor

getBgColor(windowName)
This function returns the rgb values of the background color of the first character of the
current selection on mini console (window) windowName. If windowName is omitted Mudlet
will use the main screen.

Parameters

* windowName:

A window to operate on - either a miniconsole or the main window.

Example

local r,qg,b;
selectString ("troll", 1)
r,g,b = getBgColor ()
if r == 255 and g == 0 and b == 0 then
echo ("HELP! troll is highlighted in red letters, the monster is
aggressive!\n") ;
end

http://wiki.mudlet.org/w/File:ShowColors.png

getColorWildcard

getColorWildcard(ansi color number)
This function, given an ANSI color number (list), will return all strings on the current line that
match it.

Parameters

e ansi color number:

A color number (list) to match.

Example

-- we can run this script on a line that has the players name coloured
differently to easily capture it from

-- anywhere on the line

local match = getColorWildcard(14)

if match then

echo ("\nFound "..match.."!")
else

echo ("\nDidn't find anyone.")
end
getColumnNumber
getColumnNumber()

Gets the absolute column number of the current user cursor.

Parameters
None

Example

Need example

getCurrentLine

getCurrentLine()
Returns the content of the current line under the user cursor in the buffer. The Lua variable
line holds the content of getCurrentLine() before any triggers have been run on this line.
When triggers change the content of the buffer, the variable line will not be adjusted and thus
hold an outdated string. line = getCurrentLine() will update line to the real content of the
current buffer. This is important if you want to copy the current line after it has been changed
by some triggers. selectString(line, 1) will return false and won't select anything because line
no longer equals getCurrentLine(). Consequently, selectString(getCurrentLine(), 1) is what
you need.

Parameters
None

Example

Need example

getFgColor

getFgColor(windowName)
This function returns the rgb values of the color of the first character of the current selection
on mini console (window) windowName. If windowName is omitted Mudlet will use the
main screen.

Parameters

* windowName:

A window to operate on - either a miniconsole or the main window.

Example

local r,qg,b;
selectString ("troll",1)
r,g,b = getFgColor ()
if r == 255 and g == 0 and b == 0 then
echo ("HELP! troll is written in red letters, the monster is aggressive!\n");
end

getLineCount

getLineCount()
Gets the absolute amount of lines in the current console buffer

Parameters
None

Example

Need example

getLines

getLines(from_line number, to_line number)
Returns a section of the content of the screen text buffer. Returns a Lua table with the content
of the lines on a per line basis. The form value is result = {relative linenumber = line}.
Absolute line numbers are used.

Parameters

* from_line number:

First line number

* to_line number:

End line number

Example

-- retrieve & echo the last line:
echo (getLines (getLineNumber () -1, getLineNumber()) [1l])

-- find out which server and port you are connected to (as per Mudlet settings
dialog) :
local t = getLines (0, getLineNumber ())

local server, port

for i = 1, #t do

local s, p = t[i]:match("looking up the IP address of server: (.-):(%d+)")
if s then server, port = s, p break end
end

display(server)
display (port)

getLineNumber

getLineNumber()
Returns the absolute line number of the current user cursor. The cursor by default is on the
current line the triggers are processing - which you can move around with moveCursor() and
moveCursorEnd(). This function can come in handy in combination when using with
moveCursor() and getLines().

Example

-—- use getlLines () in conjuction with getLineNumber () to check if the previous
line has a certain word

if getLines (getLineNumber ()-1, getLineNumber()) [1l]:find("attacks") then

echo ("previous line had the word 'attacks' in it!\n") end

getMainConsoleWidth

getMainConsole Width()
Returns a single number; the width of the main console (MuD output) in pixels.

Parameters
None

Example

-— Save width of the main console to a variable for future use.
consoleWidth = getMainConsoleWidth ()

hasFocus

hasFocus()
Returns true or false depending if Mudlet's main window is currently in focus (ie, the user
isn't focused on another window, like a browser). This can be useful for determining
whenever your script should call for attention or not, for example.

Parameters
None

Example

if attacked and not hasFocus () then
runaway ()

else
fight ()

end

getMainWindowsSize

getMainWindowSize()
Returns two numbers, the width and height in pixels.

Parameters
None

Example

--this will get the size of your main mudlet window and save them
--into the variables mainHeight and mainWidth
mainWidth, mainHeight = getMainWindowSize ()

getStopWatchTime

getStopWatchTimer(watchID)
Returns the time (milliseconds based) in form of 0.058 (= clock ran for 58 milliseconds before
it was stopped). Please note that after the stopwatch is stopped, retrieving the time will not
work - it's only valid while it is running.
See also: createStopWatch()

Returns a number
Parameters

* watchlD
The ID number of the watch.

Example

-- an example of showing the time left on the stopwatch
teststopwatch = teststopwatch or createStopWatch ()
startStopWatch (teststopwatch)

echo ("Time on stopwatch: "..getStopWatchTime (teststopwatch))
tempTimer (1, [[echo("Time on stopwatch: "..getStopWatchTime (teststopwatch))]])
tempTimer (2, [[echo("Time on stopwatch: "..getStopWatchTime (teststopwatch))]])

stopStopWatch (teststopwatch)

handleWindowResizeEvent
handleWindowResizeEvent()

(depreciated) This function is depreciated and should not be used; it's only documented here
for historical reference - use the sysWindowResizeEvent() event instead.

The standard implementation of this function does nothing. However, this function gets called
whenever the main window is being manually resized. You can overwrite this function in your own
scripts to handle window resize events yourself and e. g. adjust the screen position and size of your
mini console windows, labels or other relevant GUI elements in your scripts that depend on the size
of the main Window. To override this function you can simply put a function with the same name in
one of your scripts thus overwriting the original empty implementation of this

Parameters
None

Example

function handleWindowResizeEvent ()
-- determine the size of your screen
WindowWidth=0;
WindowHeight=0;
WindowWidth, WindowHeight = getMainWindowSize () ;

-- move mini console "sys" to the far right side of the screen whenever the
screen gets resized

moveWindow ("sys",WindowWidth-300,0)
end

hasFocus

hasFocus()
Returns true or false depending on if the main Mudlet window is in focus. By focus, it means
that the window is selected and you can type in the input line and etc. Not in focus means that
the window isn’t selected, some other window is currently in focus.

Parameters
None

Example

Need example

hecho

hecho(window, text)
Echoes text that can be easily formatted with colour tags in the hexadecimal format.
See Also: decho(), cecho()

Parameters

* window:

Optional - the window name to echo to - can either be none or "main" for the main window,
or the miniconsoles name.

* fext:

The text to display, with color changes made within the string using the format |
cFRFGFB,BRBGBB where FR is the foreground red value, FG is the foreground green value,
FB is the foreground blue value, BR is the background red value, etc., BRBGBB is optional. |r
can be used within the string to reset the colors to default.

Example

hecho (" |ca00040black!")

hideToolBar

hideToolBar(name)
Hides the toolbar with the given name name and makes it disappear. If all toolbars of a tool
bar area (top, left, right) are hidden, the entire tool bar area disappears automatically.

Parameters

® name:

name of the button group to display

Example

hideToolBar ("my offensive buttons")

hideWindow

hideWindow(name)
This function hides a mini console label. To show it again, use showWindow().

See also: createMiniConsole(), createLabel()

Parameters
None

Example

Need example

insertLink

insertLink([windowName], text, command, hint, [bool use current format or defaultLinkFormat])
Inserts a piece of text as a clickable link at the current cursor position - similar to insertText().

Parameters

* fext:

text to display in the echo. Same as a normal echo().

e command:

lua code to do when the link is clicked.

e hint:

text for the tooltip to be displayed when the mouse is over the link.

* window:

if true, then the link will use the current selection style (colors, underline, etc). If missing or
false, it will use the default link style - blue on black underlined text.

Example

Need example

insertPopup

insertPopup([windowName], text, {commands}, {hints}, [current or default format])
Creates text with a left-clickable link, and a right-click menu for more options exactly where
the cursor position is, similar to insertText(). The inserted text, upon being left-clicked, will
do the first command in the list. Upon being right-clicked, it'll display a menu with all
possible commands. The menu will be populated with hints, one for each line.

Parameters

* window:

Optional - the window to echo to - use either main or omit for the main window, or the
miniconsoles name otherwise.

® name:

the name of the console to operate on. If not using this in a miniConsole, use "main" as the
name.

* {lua code}:

a table of lua code strings to do. ie,

{[[send("hello™) 1], [[echo("hi!"]]}

o [hints}:

a table of strings which will be shown on the popup and right-click menu. ie,

{"send the hi command", "echo hi to yourself"}

* current or default format:

a boolean value for using either the current formatting options (colour, underline, italic) or the
link default (blue underline).

Example

—-—- Create some text as a clickable with a popup menu:
insertPopup ("activities to do", {[[send "sleep"]], [[send "sit"]], [[send
"stand"]11}, {"sleep", "sit", "stand"})

insertText

insertText([optional windowName], text)
Inserts text at cursor postion in window - unlike echo(), which inserts the text at the end of the
last line in the buffer (typically the one being processed by the triggers). You can use
moveCursor() to move the cursor into position first.

insertHTMLY() also does the same thing as insertText, if you ever come across it.

See also: cinsertText()

Parameters

* window:

The window to insert the text to.

* fext:

The text you will insert into the current cursor position.

Example

-- move the cursor to the end of the previous line and insert some text

-- move to the previous line

moveCursor (0, getLineNumber ()-1)

-- move the end the of the previous line
moveCursor (#getCurrentlLine (), getLineNumber ())

fg("dark slate gray")
insertText (' <- that looks nice.')

deselect ()
resetFormat ()
moveCursorEnd ()

isAnsiBgColor

isAnsiBgColor(ansiBgColorCode)
This function tests if the first character of the current selection has the background color
specified by ansiBgColorCode.

Parameters

* ansiBgColorCode:

A color code to test for, possible codes are:

0 = default text color
light black
2 = dark black

—
Il

= light red
dark red

light green
dark green

= light yellow

= dark yellow

9 = light blue

10 = dark blue

11 light magenta
12 = dark magenta

@ ~J oy 0w
Il

13 = light cyan
14 = dark cyan
15 = light white

16 = dark white

Example
selectString(matches[1], 1)
if isAnsiBgColor(5) then

bg("red");

resetFormat () ;

echo ("yes, the background of the text is light green")
else

echo("no sorry, some other backgroundground color")
end

W Note: matches[1] holds the matched trigger pattern - even in substring, exact match, begin of
line substring trigger patterns or even color triggers that do not know about the concept of capture
groups. Consequently, you can always test if the text that has fired the trigger has a certain color and
react accordingly. This function is faster than using getFgColor() and then handling the color
comparison in Lua.

isAnsiFgColor

1sAnsiFgColor(ansiFgColorCode)
This function tests if the first character of the current selection has the foreground color
specified by ansiFgColorCode.

Parameters

* ansiFgColorCode:

A color code to test for, possible codes are:

= default text color
light black
dark black

= light red

dark red

light green
dark green

= light yellow

= dark yellow

= light blue

= dark blue
light magenta
dark magenta
= light cyan

= dark cyan

0 ~Joy 0 WN RO
Il

R N =S Ve
S W R o
|
[

15 = light white
16 dark white

Example

selectString(matches[1l], 1)
if isAnsiFgColor(5) then
bg ("red") ;
resetFormat () ;
echo ("yes, the text is light green")
else
echo("no sorry, some other foreground color")
end

W Note: matches| 1] holds the matched trigger pattern - even in substring, exact match, begin of
line substring trigger patterns or even color triggers that do not know about the concept of capture
groups. Consequently, you can always test if the text that has fired the trigger has a certain color and
react accordingly. This function is faster than using getFgColor() and then handling the color
comparison in Lua.

moveCursor

moveCursor([optional windowName], X, y)
Moves the user cursor of the window windowName, or the main window, to the absolute
point (x,y). This function returns false if such a move is impossible e.g. the coordinates don’t
exist. To determine the correct coordinates use getLineNumber(), getColumnNumber() and
getLastLineNumber(). The trigger engine will always place the user cursor at the beginning of
the current line before the script is run. If you omit the windowName argument, the main
screen will be used.

Returns true or false depending on if the cursor was moved to a valid position. Check this
before doing further cursor operations - because things like deleteLine() might invalidate this.

Parameters

e windowName:

The window you are going to move the cursor in.

¢ X

The horizontal axis in the window - that is, the line number.

*

The vertical axis in the window - that is, the letter position within the line.

Example

-- move cursor to the start of the previous line and insert -<(

-— the first 0 means we want the cursor right at the start of the line,

-- and getLineNumber () -1 means we want the cursor on the current line# - 1 which
-- equals to the previous line

moveCursor (0, getLineNumber ()-1)

insertText ("-<(")

-- now we move the cursor at the end of the previous line. Because the
-— cursor is on the previous line already, we can use #getCurrentLine ()
-— to see how long it is. We also just do getLineNumber () because
getLineNumber ()

-- returns the current line # the cursor is on

moveCursor (#getCurrentlLine (), getLineNumber ())

insertText (")>-")

-- finally, reset it to the end where it was after our shenaningans - other
scripts

-— could expect the cursor to be at the end

moveCursorEnd ()

-—- a more complicated example showing how to work with Mudlet functions

—-- set up the small system message window in the top right corner
-— determine the size of your screen
local WindowWidth, WindowHeight = getMainWindowSize ()

-- define a mini console named "sys" and set its background color
createMiniConsole ("sys",WindowWidth-650,0,650,300)
setBackgroundColor ("sys",85,55,0,255)

-- you *must* set the font size, otherwise mini windows will not work properly
setMiniConsoleFontSize ("sys", 12)

-- wrap lines in window "sys" at 65 characters per line

setWindowWrap ("sys", 60)

-- set default font colors and font style for window "sys"

setTextFormat ("sys",0,35,255,50,50,50,0,0,0)

—-— clear the window

clearUserWindow ("sys")

moveCursorEnd ("sys")

setFgColor("sys", 10,10,0)

setBgColor ("sys", 0,0,255)

echo ("sys", "testl---linel\n<this line is to be deleted>\n<this line is to be
deleted also>\n")

echo ("sys", "testl---1line2\n")

echo ("sys", "testl---1line3\n")

setTextFormat ("sys",158,0,255,255,0,255,0,0,0);
--setFgColor ("sys",255,0,0);

echo ("sys", "testl---1line4\n")

echo ("sys", "testl---1ine5\n")

moveCursor ("sys", 1,1)

-- deleting lines 2+3
deleteLine ("sys")
deletelLine ("sys")

-- inserting a line at pos 5,2

moveCursor ("sys", 5,2)

setFgColor ("sys", 100,100,0)

setBgColor ("sys", 255,100,0)

insertText ("sys", "############## line inserted at pos 5/2 #############4")

-- inserting a line at pos 0,0

moveCursor ("sys", 0,0)

selectCurrentLine ("sys")

setFgColor ("sys", 255,155,255)

setBold("sys", true);

setUnderline("sys", true)

setItalics("sys", true)

insertText ("sys", "—--————-- line inserted at: 0/0 ————- \n")

setBold("sys", true)

setUnderline("sys", false)

setItalics("sys", false)

setFgColor ("sys", 255,100,0)

setBgColor ("sys", 155,155,0)

echo ("sys", "*** This is the end. ***\n")

moveCursorEnd

moveCursorEnd(windowName)
Moves the cursor to the end of the buffer. "main" is the name of the main window, otherwise
use the name of your user window.

See Also: moveCursor()

Returns true or false
Parameters

* windowName:

The name of your user window.
Example

Need example

moveGauge

moveGauge(gaugeName, newX, newY)
Moves a gauge created with createGauge to the new X,y coordinates. Remember the
coordinates are relative to the top-left corner of the output window.

Parameters

* gaugeName:

The name of your gauge

* newX:

The horizontal pixel location

* newY:

The vertical pixel location

Example

-— This would move the health bar gauge to the location 1200, 400
moveGauge ("healthBar", 1200, 400)

moveWindow

moveWindow(name, X, y)

This function moves window name to the given x/y coordinate. The main screen cannot be
moved. Instead you’ll have to set appropriate border values — preferences to move the main
screen e.g. to make room for chat or information mini consoles, or other GUI elements. In the
future moveWindow() will set the border values automatically if the name parameter is
omitted.

See Also: createMiniConsole(), createLabel(), handleWindowResizeEvent(), resize Window(),
setBorderTop()

Parameters

name:.

The name of your winow

newX:

The horizontal pixel location

newlY:

The vertical pixel location

openUserWindow

openUserWindow(name)

Opens a user dockable console window for user output e.g. statistics, chat etc. If a window of
such a name already exists, nothing happens. You can move these windows, dock them, make
them into notebook tabs or float them. Note that they do currently have a bug in a sense that
they will inherit your main windows borders. The windows position cannot be adjusting via
scripting yet at the moment, and the layout won't be remembered next time Mudlet is open.

Parameters

name: The name of your window

Examples

openUserWindow ("My floatig window")
cecho ("My floatig window", "<red>hello <blue>bob!")

paste

paste(windowName)

Pastes the previously copied text including all format codes like color, font etc. at the current
user cursor position. The copy() and paste() functions can be used to copy formated text from
the main window to a user window without losing colors e. g. for chat windows, map
windows etc.

Parameters

windowName:

The name of your window

pasteUserWindow
pasteUserWindow(windowName)
Need description here

Parameters

* windowName:

The name of your window

prefix

prefix(text)
Prefixes text at the beginning of the current line when used in a trigger.

Parameters

* ftext:

The information you want to prefix
Example

-—- Prefix the hours, minutes and seconds onto our prompt even though Mudlet has
a button for that
prefix (os.date ("$H:%M:%S "))

replace

replace([windowName,] newtext)
Replaces the currently selected text with the new text. To select text, use selectString(),
selectSection() or a similar function.

W Note: If you’d like to delete/gag the whole line, use deleteLine().

W Note: This won't preserve existing colours by default - however it's easy to make it, see example
below.

Parameters

* windowName: optional name of window (a miniconsole)
* with: the new text to display.

Example

-- replace word "troll" with "cute trolly"
selectString ("troll", 1)
replace ("cute trolly")

-- replace the whole line
selectCurrentLine ()
replace ("Out with the old, in with the new!")

-- if you'd like to keep the original colouring instead of applying your own,
you can do this:
if selectString ("There", 1) ~= -1 then

setBgColor (getBgColor ())
setFgColor (getFgColor ())
replace ("Here")

end

replaceAll

replaceAll(what, with)
Replaces all occurrences of what in the current line with with.

Parameters

* what: the text to replace
* with: the new text to have in place

Examples

-- replace all occurrences of the word "south" in the line with "north"
replaceAll ("south", "north")

-- replace all occurrences of the text that the variable "target" has
replaceAll (target, "The Bad Guy")

resizeWindow

resizeWindow(name,width,height)
Resizes a mini console or label
See also: createMiniConsole(), createlabel(), handleWindowResizeEvent(), resizeWindow(),
setBorderTop()

selectCaptureGroup
selectCaptureGroup(groupNumber)
Selects the content of the capture group number in your Perl regular expression

Example
Perl Reqular expression e.g. "you have (\d+) Euro".

--If you want to color the amount of money you have green you do:

selectCaptureGroup (1) ;
setFgColor (0,255,0)

selectSection

selectSection(from, how long)
Selects the specified parts of the line starting from the left and extending to the right for
however how long. The line starts from 0.
Returns true if the selection was successful, and false if the line wasn't actually long enough
or the selection couldn't be done in general.

Example

—-—- select and colour the first character in the line red
if selectSection(0,1) then fg("red") end

-- select and colour the second character green (start selecting from the first
character, and select 1 character)
if selectSection(l,1) then fg("green") end

-—- select and colour three character after the first two grey (start selecting
from the 2nd character for 3 characters long)
if selectSection(2,3) then fg("grey") end

selectString

selectString(text, number of match)
Selects a substring from the line where the user cursor is currently positioned - allowing you
to edit selected text (apply colour, make it be a link, copy to other windows or other things).

You can move the user cursor with moveCursor(). When a new line arrives from the MUD, the user
cursor is positioned at the beginning of the line. However, if one of your trigger scripts moves the
cursor around you need to take care of the cursor position yourself and make sure that the cursor is
in the correct line if you want to call one of the select functions. To deselect text, see deselect().

Returns position in line or -1 on error (text not found in line)

W Note: To prevent selection of random data use the error return if not found like this:
if selectString("big monster", 1) > -1 then setFgColor(255,0,0) end

setBgColor

setBgColor([windowName], r,g,b)
Sets the current text background color in the main window unless windowName parameter
given. If you have selected text prior to this call, the selection will be highlighted otherwise
the current text background color will be changed. If you set a foreground or background
color, the color will be used until you call resetFormat() on all further print commands.

See also: cecho()

Parameters

* windowName:

Optional parameter set the current text background color in windowname given.

*

The red component of the gauge color. Passed as an integer number from 0 to 255

. g
The green component of the gauge color. Passed as an integer number from 0 to 255

e b:

The blue component of the gauge color. Passed as an integer number from 0 to 255

Example

--highlights the first occurrence of the string "Tom" in the current line with a
red background color.

selectString("Tom", 1)

setBgColor(255,0,0)

--prints "Hello" on red background and "You" on blue.
setBgColor (255,0,0)

echo ("Hello")

setBgColor (0,0, 255)

echo (" You!")

resetFormat ()

setBold

setBold(windowName, bool)
Sets the current text font to bold (true) or non-bold (false) mode. If the windowName
parameters omitted, the main screen will be used.

setFgColor

setFgColor([windowNamel],r, g, b)
Sets the current text foreground color in the main window unless windowName parameter
given.

* windowName:

Optional parameter set the current text background color in windowname given.

e

The red component of the gauge color. Passed as an integer number from 0 to 255

. g
The green component of the gauge color. Passed as an integer number from 0 to 255

e b:

The blue component of the gauge color. Passed as an integer number from 0 to 255

Example

--highlights the first occurrence of the string "Tom" in the current line with a
red foreground color.

selectString("Tom", 1)

setFgColor(255,0,0)

setGauge

setGauge(gaugeName, currentValue, maxValue, gaugeText)
Use this function when you want to change the gauges look according to your values. Typical
usage would be in a prompt with your current health or whatever value, and throw in some
variables instead of the numbers.

Example

--Change the looks of the gauge named healthBar and make it
--fill to half of its capacity. The height is always remembered.
setGauge ("healthBar", 200, 400)

--If you wish to change the text on your gauge, you’d do the following:
setGauge ("healthBar", 200, 400, "some text")

setltalics

setltalics(windowName, bool)
Sets the current text font to italics/non-italics mode. If the windowName parameters omitted,
the main screen will be used.

setMiniConsoleFontSize
setMiniConsoleFontSize(name, fontSize)

Sets the font size of the mini console. see also: createMiniConsole(), createLabel()

setTextFormat

setTextFormat(windowName, r1, g1, bl, 12, g2, b2, bold, underline, italics)
Sets current text format of window windowName: foreground color(r1,g1,b1), background
color(r2,g2,b2), bold(1/0), underline(1/0), italics(1/0) A more convenient way to control the
text format in a mini console is to use setFgColor(windowName, r,g,b),
setBold(windowName, true), setltalics(windowName, true), setUnderline(windowName,
true) etc. — createMiniConsole, setBold, setBgColor, setFgColor, setltalics, setUnderline

Example

--This script would create a mini text console and write with yellow foreground
color and blue background color "This is a test".

createMiniConsole("conl", 0,0,300,100);

setTextFormat ("conl",0,0,255,255,255,0,1,1,1);

echo ("conl","This is a test")

setUnderline

setUnderline(windowName, bool)
Sets the current text font to underline/non-underline mode. If the windowName parameters
omitted, the main screen will be used.

setWindowWrap

setWindow Wrap(windowName, wrapAt)
sets at what position in the line the console or miniconsole will start word wrap

showCaptureGroups
showCaptureGroups()

Lua debug function that highlights in random coolors all capture groups in your trigger regex
on the screen. This is very handy if you make complex regex and want to see what really
matches in the text. This function is defined in LuaGlobal.lua.

Example
Make a trigger with the regex (\w+) and call this function in a trigger. All words in the text
will be highlighted in random colors.

showMultimatches

showMultimatches()
Lua helper function to show you what the table multimatches[n][m] contains. This is very
useful when debugging multiline triggers - just doing showMultimatches() in your script will
make it give the info.

showWindow

showWindow(name)
Shows user window name.

replaceWildcard

replaceWildcard(which, replacement)
Replaces the given wildcard (as a number) with the given text. Equivalent to doing:

selectString (matches([2], 1)
replace ("text™)

Parameters

* which:

Wildcard to replace.

* replacement:

Text to replace the wildcard with.

Example

replaceWildcard (2, "hello") -- on a perl regex trigger of ~You wave (goodbye)\.
$, it will make it seem like you waved hello

resetFormat

resetFormat()
Resets the colour/bold/italics formatting. Always use this function when done adjusting
formatting, so make sure what you've set doesn't 'bleed' onto other triggers/aliases.

Parameters
None

Example

—-- select and set the 'Tommy' to red in the line
if selectString ("Tommy", 1) ~= -1 then fg("red") end

-- now reset the formatting, so our echo isn't red
resetFormat ()
echo (" Hi Tommy!")

-- another example: just highlighting some words
for , word in ipairs{"he", "she", "her", "their"} do
if selectString(word, 1) ~= -1 then
bg ("blue")
end
end
resetFormat ()

selectCurrentLine

selectCurrentLine()
Selects the content of the current line that the cursor at. By default, the cursor is at the start of
the current line that the triggers are processing, but you can move it with the moveCursor()

function. ¥ Note: This selects the whole line, including the linebreak - so it has a subtle
difference from the slightly slower selectString(line, 1) selection method.
See Also: selectString(), getCurrentLine()

Parameters
None

Example

-- color the whole line green!
selectCurrentLine ()
fg("green")

deselect ()

resetFormat ()

setBackgroundColor

setBackgroundColor(labelName, red, green, blue, transparency)
Sets rgb color values and the transparency for the given window. Colors are from 0 to 255 (0
being black), and transparency is from - to 255 (0 being completely transparent).

W Note: Transparency only works on labels, not miniConsoles for efficiency reasons.

Parameters

e JabelName:

The name of the label to change it's background color.

* red:

Amount of red to use, from 255 (full) to 0 (none).

> green:

Amount of green to use, from 255 (full) to 0 (none).

* blue:
Amount of red to use, from 255 (full) to 0 (none).

* transparency:

Amount of transparency to use, from 255 (fully opaque) to 0 (fully transparent).

Example

-- make a red label that's somewhat transparent
setBackgroundColor ("some label",255,0,0,200)

setBackgroundImage

setBackgroundImage(labelName, imagelLocation)
Loads an image file (png) as a background image for a label. This can be used to display
clickable buttons in combination with setLabelClickCallback() and such.

Note you can only do this for labels, not miniconsoles.

Note you can also load images via setlLabelStyleSheet().

Parameters

e JabelName:

The name of the label to change it's background color.

* imageLocation:

The full path to the image location. It's best to use [[]] instead of "" for it - because for
Windows paths, backslashes need to be escaped.

Example

-- give the top border a nice look
setBackgroundImage ("top bar", [[/home/vadi/Games/Mudlet/games/top bar.png]l])

setBorderBottom

setBorderBottom(size)
Sets the size of the bottom border of the main window in pixels. A border means that the
MUD text won't go on it, so this gives you room to place your graphical elements there.
See Also: setBorderColor()

Parameters

* gsize:

Height of the border in pixels - with 0 indicating no border.

Example

setBorderLeft (100)

setBorderColor

setBorderColor(r,g,b)
Sets the color of the main windows border that you can create either with setBorderTop(),
setBorderBottom(), setBorderLeft(), setBorderRight(), or via the main window settings.
See Also: setBorderTop(), setBorderBottom(), setBorderLeft(), setBorderRight()

Parameters

e r

Amount of red to use, from 0 to 255.
(] g
Amount of green to use, from 0 to 255.

e b:

Amount of blue to use, from 0 to 255.

Example

-—- set the border to be completely blue
setBorderColor (0, 0, 255)

-- or red, using a name
setBorderColor (unpack(color table.red))

setBorderLeft

setBorderLeft(size)
Sets the size of the left border of the main window in pixels. A border means that the MUD
text won't go on it, so this gives you room to place your graphical elements there.
See Also: setBorderColor()

Parameters

* size:
Width of the border in pixels - with 0 indicating no border.
Example

setBorderLeft (100)

setBorderRight

setBorderRight(size)
Sets the size of the right border of the main window in pixels. A border means that the MUD

text won't go on it, so this gives you room to place your graphical elements there.
See Also: setBorderColor()

Parameters

* gsize:

Width of the border in pixels - with 0 indicating no border.

Example

setBorderRight (100)

setBorderTop

setBorderTop(size)
Sets the size of the top border of the main window in pixels. A border means that the MUD
text won't go on it, so this gives you room to place your graphical elements there.
See Also: setBorderColor()

Parameters

* size:

Height of the border in pixels - with 0 indicating no border.

Example

setBorderTop (100)

setLabelClickCallback

setLabelClickCallback(labelName, luaFunctionName, optional any amount of arguments)
Specifies a Lua function to be called if the user clicks on the label/image. This function can
pass any number of string or integer number values as additional parameters. These
parameters are then used in the callback - thus you can associate data with the label/button.

Parameters

e JabelName:

The name of the label to attach a callback function to.

e luaFunctionName:

The Lua function name to call, as a string - it must be registered as a global function, and not
inside any namespaces (tables).

* optional any amount of arguments:

Y position of the miniconsole. Measured in pixels, with 0 being the very top. Passed as an
integer number.

Example

function onClickGoNorth ()
echo ("the north button was clicked!")
end

setLabelClickCallback("compassNorthImage", "onClickGoNorth")

setLink

setLink(command, tooltip)
Turns the selected() text into a clickable link - upon being clicked, the link will do the
command code. Tooltip is a string which will be displayed when the mouse is over the
selected text.

Parameters

e command:

command to do when the text is clicked

* tooltip:

tooltip to show when the mouse is over the text - explaining what would clicking do

Example

-— you can clickify a lot of things to save yourself some time - for example,
you can change

-— the line where you receive a message to be clickable to read it!

-- prel regex trigger:

-- ~You just received message # (\w+) from \w+\.$

-- script:

selectString (matches[2], 1)

setUnderline (true) setlink([[send("msg read]]..matches[2]..[[")]], "Read
#"..matches[2])

resetFormat ()

setLabelStyleSheet

setLabelStyleSheet(label, markup)
Applies Qt style formatting to a label via a special markup language.

Parameters

e label:

The name of the label to be formatted (passed when calling createLabel).

* markup:

The string instructions, as specified by the Qt Style Sheet reference.

References
http://doc.qgt.nokia.com/4.7/stylesheet-reference.html#list-of-properties

Example

http://doc.qt.nokia.com/4.7/stylesheet-reference.html#list-of-properties

—-— This creates a label with a white background and a green border, with the
text "test"
-- inside.
createlLabel ("test", 50, 50, 100, 100, 0)
setLabelStyleSheet ("test", [I[
background-color: white;
border: 10px solid green;
font-size: 12px;
11)

echo ("test", "test")

—-— This creates a label with a single image, that will tile or clip depending on
the
-- size of the label. To use this example, please supply your own image.
createlabel ("test5", 50, 353, 164, 55, 0)
setLabelStyleSheet ("testb", [I[
background-image:
url (C:/Users/Administrator/.config/mudlet/profiles/Midkemia
Online/Vyzor/MkO logo.png);
11)

-—- This creates a label with a single image, that can be resized (such as during
a
-- sysWindowResizeEvent). To use this example, please supply your own image.
createlabel ("test9", 215, 353, 100, 100, 0)
setLabelStyleSheet ("test9", [I
border-image:
url (C:/Users/Administrator/.config/mudlet/profiles/Midkemia
Online/Vyzor/MkO logo.png);
11)

setPopup

setPopup(name, {lua code}, {hints})
Turns the selected() text into a left-clickable link, and a right-click menu for more options.
The selected text, upon being left-clicked, will do the first command in the list. Upon being
right-clicked, it'll display a menu with all possible commands. The menu will be populated
with hints, one for each line.

Parameters

®* name:

the name of the console to operate on. If not using this in a miniConsole, use "main" as the
name.

* {lua code)}:

a table of lua code strings to do. ie,
{[[send ("hello")]], [[echo("hi!"]1}
* [thints}:
a table of strings which will be shown on the popup and right-click menu. ie,

{"send the hi command", "echo hi to yourself"}

Example

-- In a "Raising your hand in greeting, you say "Hello!" exact match trigger,
-- the following code will make left-clicking on "Hello® show you an echo, while
right-clicking

-- will show some commands you can do.

selectString ("Hello", 1)

setPopup ("main", {[[send("bye")]], [[echo("hi!™)]]1}, {"left-click or right-click
and do first item to send bye", "click to echo hi"})

showToolBar

showToolBar(name)

Makes a toolbar (a button group) appear on the screen.
Parameters

* name:

name of the button group to display

Example

showToolBar ("my offensive buttons")

wrapLine

wrapLine(windowName, lineNumber)
wraps the line specified by /ineNumber of mini console (window) windowName. This
function will interpret \n characters, apply word wrap and display the new lines on the screen.
This function may be necessary if you use deleteLine() and thus erase the entire current line in
the buffer, but you want to do some further echo() calls after calling deleteLine(). You will
then need to re-wrap the last line of the buffer to actually see what you have echoed and get
your \n interpreted as newline characters properly. Using this function is no good
programming practice and should be avoided. There are better ways of handling situations
where you would call deleteLine() and echo afterwards e.g.:

selectString(line, 1)
replace("")

This will effectively have the same result as a call to deleteLine() but the buffer line will not be
entirely removed. Consequently, further calls to echo() etc. sort of functions are possible without
using wrapLine() unnecessarily.

See Also: replace(), deleteLine()

Parameters

* windowName:

The miniconsole or the main window (use main for the main window)

e [ineNumber:

The line number which you'd like re-wrapped.

Example

-- re-wrap the last line in the main window
wrapLine ("main", getLineCount ())

	Alphabetical Function Index
	Mudlet System Variables
	Function Categories
	Basic Essentials
	send
	echo

	Database Functions
	db:add
	db:aggregate
	db:AND
	db:between
	db:create
	db:delete
	db:eq
	db:exp
	db:fetch
	db:gt
	db:get_database
	db:gte
	db:in_
	db:is_nil
	db:is_not_nil
	db:like
	db:lt
	db:lte
	db:merge_unique
	db:not_between
	db:not_eq
	db:not_in
	db:not_like
	db:OR
	db:set
	db:update

	Date & Time Functions
	datetime:parse
	getTime
	getTimestamp

	Display Functions
	display
	showColors
	wrapLine

	File System Functions
	io.exists
	lfs.attributes

	Mapper Functions
	addAreaName
	addMapEvent
	addMapMenu
	addRoom
	addSpecialExit
	centerview
	clearRoomUserData
	clearSpecialExits
	createMapLabel
	createMapper
	createRoomID
	deleteArea
	deleteMapLabel
	deleteRoom
	getAreaRooms
	getAreaTable
	getCustomEnvColorTable
	getMapLabel
	getMapLabels
	getModulePriority
	getPath
	getRoomArea
	getRoomAreaName
	getRoomCoordinates
	getRoomEnv
	getRoomExits
	getRoomIDbyHash
	getRoomName
	getRooms
	getRoomsByPosition
	getRoomUserData
	getRoomWeight
	getSpecialExits
	getSpecialExitsSwap
	gotoRoom
	hasExitLock
	hasSpecialExitLock
	highlightRoom
	loadMap
	lockExit
	lockRoom
	lockSpecialExit
	removeMapEvent
	roomExists
	roomLocked
	saveMap
	searchRoom
	setAreaName
	setCustomEnvColor
	setExit
	setGridMode
	setModulePriority
	setRoomArea
	setRoomChar
	setRoomCoordinates
	setRoomEnv
	setRoomIDbyHash
	setRoomName
	setRoomUserData
	setRoomWeight
	speedwalk
	unHighlightRoom

	Miscellaneous Functions
	feedTriggers
	expandAlias
	feedTriggers
	getMudletHomeDir
	playSoundFile
	registerAnonymousEventHandler
	spawn

	Mudlet Object Functions
	appendCmdLine
	clearCmdLine
	createStopWatch
	disableAlias
	disableKey
	disableTimer
	disableTrigger
	enableAlias
	enableKey
	enableTimer
	enableTrigger
	exists
	getButtonState
	invokeFileDialog
	isActive
	isPrompt
	killAlias
	killTimer
	killTrigger
	permAlias
	permGroup
	permRegexTrigger
	permSubstringTrigger
	permTimer
	printCmdLine
	raiseEvent
	remember
	resetStopWatch
	setConsoleBufferSize
	setTriggerStayOpen
	startStopWatch
	stopStopWatch
	tempAlias
	tempBeginOfLineTrigger
	tempColorTrigger
	tempExactMatchTrigger
	tempLineTrigger
	tempRegexTrigger
	tempTimer
	tempTrigger
	tempButton

	Networking Functions
	disconnect
	downloadFile
	getNetworkLatency
	openUrl
	reconnect
	sendAll
	sendGMCP
	sendIrc
	sendTelnetChannel102

	String Functions
	string.byte
	string.char
	string.cut
	string.dump
	string.enclose
	string.ends
	string.find
	string.findPattern
	string.format
	string.genNocasePattern
	string.gfind
	string.gmatch
	string.gsub
	string.len
	string.lower
	string.match
	string.rep
	string.reverse
	string.split
	string.starts
	string.sub
	string.title
	string.trim
	string.upper

	Table Functions
	table.complement
	table.concat
	table.contains
	table.foreach
	table.intersection
	table.insert
	table.index_of
	table.is_empty
	table.load
	table.maxn
	table.n_union
	table.n_complement
	table.n_intersection
	table.pickle
	table.remove
	table.save
	table.sort
	table.size
	table.setn
	table.unpickle
	table.update
	table.union

	UI Functions
	appendBuffer
	bg
	calcFontSize
	cecho
	cinsertText
	clearUserWindow
	clearWindow
	copy
	createBuffer
	createConsole
	createGauge
	createLabel
	createMiniConsole
	decho
	deleteLine
	deselect
	echoLink
	echoUserWindow
	echoPopup
	fg
	getBgColor
	getColorWildcard
	getColumnNumber
	getCurrentLine
	getFgColor
	getLineCount
	getLines
	getLineNumber
	getMainConsoleWidth
	hasFocus
	getMainWindowSize
	getStopWatchTime
	handleWindowResizeEvent
	hasFocus
	hecho
	hideToolBar
	hideWindow
	insertLink
	insertPopup
	insertText
	isAnsiBgColor
	isAnsiFgColor
	moveCursor
	moveCursorEnd
	moveGauge
	moveWindow
	openUserWindow
	paste
	pasteUserWindow
	prefix
	replace
	replaceAll
	resizeWindow
	selectCaptureGroup
	selectSection
	selectString
	setBgColor
	setBold
	setFgColor
	setGauge
	setItalics
	setMiniConsoleFontSize
	setTextFormat
	setUnderline
	setWindowWrap
	showCaptureGroups
	showMultimatches
	showWindow
	replaceWildcard
	resetFormat
	selectCurrentLine
	setBackgroundColor
	setBackgroundImage
	setBorderBottom
	setBorderColor
	setBorderLeft
	setBorderRight
	setBorderTop
	setLabelClickCallback
	setLink
	setLabelStyleSheet
	setPopup
	showToolBar
	wrapLine

